Back to Search Start Over

Functional Assays Are Essential for Interpretation of Missense Variants Associated with Variable Expressivity

Authors :
Taylor A. Evans
Melis Atalar
Patrick R. Sosnay
Molly B. Sheridan
Sangwoo T. Han
Matthew J. Pellicore
Karen S. Raraigh
Anya T. Joynt
Emily Davis
Allison F. McCague
Neeraj Sharma
Garry R. Cutting
Zhongzhou Lu
Source :
The American Journal of Human Genetics. 102:1062-1077
Publication Year :
2018
Publisher :
Elsevier BV, 2018.

Abstract

Missense DNA variants have variable effects upon protein function. Consequently, interpreting their pathogenicity is challenging, especially when they are associated with disease variability. To determine the degree to which functional assays inform interpretation, we analyzed 48 CFTR missense variants associated with variable expressivity of cystic fibrosis (CF). We assessed function in a native isogenic context by evaluating CFTR mutants that were stably expressed in the genome of a human airway cell line devoid of endogenous CFTR expression. 21 of 29 variants associated with full expressivity of the CF phenotype generated 25% WT-CFTR function; two were higher than 75% WT-CFTR. As expected, 14 of 19 variants associated with partial expressivity of CF had >25% WT-CFTR function; however, four had minimal to no effect on CFTR function (>75% WT-CFTR). Thus, 6 of 48 (13%) missense variants believed to be disease causing did not alter CFTR function. Functional studies substantially refined pathogenicity assignment with expert annotation and criteria from the American College of Medical Genetics and Genomics and Association for Molecular Pathology. However, four algorithms (CADD, REVEL, SIFT, and PolyPhen-2) could not differentiate between variants that caused severe, moderate, or minimal reduction in function. In the setting of variable expressivity, these results indicate that functional assays are essential for accurate interpretation of missense variants and that current prediction tools should be used with caution.

Details

ISSN :
00029297
Volume :
102
Database :
OpenAIRE
Journal :
The American Journal of Human Genetics
Accession number :
edsair.doi.dedup.....a640c75b286ad03b83bbbdaa2ff4b21d
Full Text :
https://doi.org/10.1016/j.ajhg.2018.04.003