Back to Search Start Over

Cholinergic modulation of spindle bursts in the neonatal rat visual cortex in vivo

Authors :
Yehezkel Ben-Ari
Ileana L. Hanganu
Jochen F. Staiger
Rustem Khazipov
Epilepsie et ischémie cérébrale
Université de la Méditerranée - Aix-Marseille 2-Institut National de la Santé et de la Recherche Médicale (INSERM)
Institute of Anatomy and Cell Biology
Albert-Ludwigs-Universität Freiburg
Tyzio, Roman
Source :
Journal of Neuroscience, Journal of Neuroscience, 2007, 27 (21), pp.5694-705. ⟨10.1523/JNEUROSCI.5233-06.2007⟩, Journal of Neuroscience, Society for Neuroscience, 2007, 27 (21), pp.5694-705. ⟨10.1523/JNEUROSCI.5233-06.2007⟩
Publication Year :
2007
Publisher :
HAL CCSD, 2007.

Abstract

Acetylcholine (ACh) is known to shape the adult neocortical activity related to behavioral states and processing of sensory information. However, the impact of cholinergic input on the neonatal neuronal activity remains widely unknown. Early during development, the principal activity pattern in the primary visual (V1) cortex is the intermittent self-organized spindle burst oscillation that can be driven by the retinal waves. Here, we assessed the relationship between this early activity pattern and the cholinergic drive by either blocking or augmenting the cholinergic input and investigating the resultant effects on the activity of the rat visual cortex during the first postnatal weekin vivo. Blockade of the muscarinic receptors by intracerebroventricular, intracortical, or supracortical atropine application decreased the occurrence of V1 spindle bursts by 50%, both the retina-independent and the optic nerve-mediated spindle bursts being affected. In contrast, blockade of acetylcholine esterase with physostigmine augmented the occurrence, amplitude, and duration of V1 spindle bursts. Whereas direct stimulation of the cholinergic basal forebrain nuclei increased the occurrence probability of V1 spindle bursts, their chronic immunotoxic lesion using 192 IgG-saporin decreased the occurrence of neonatal V1 oscillatory activity by 87%. Thus, the cholinergic input facilitates the neonatal V1 spindle bursts and may prime the developing cortex to operate specifically on relevant early (retinal waves) and later (visual input) stimuli.

Details

Language :
English
ISSN :
02706474 and 15292401
Database :
OpenAIRE
Journal :
Journal of Neuroscience, Journal of Neuroscience, 2007, 27 (21), pp.5694-705. ⟨10.1523/JNEUROSCI.5233-06.2007⟩, Journal of Neuroscience, Society for Neuroscience, 2007, 27 (21), pp.5694-705. ⟨10.1523/JNEUROSCI.5233-06.2007⟩
Accession number :
edsair.doi.dedup.....a6a9b6e757ff301dec195a518c955cc6
Full Text :
https://doi.org/10.1523/JNEUROSCI.5233-06.2007⟩