Back to Search Start Over

Phylogenomic fingerprinting of tempo and functions of horizontal gene transfer within ochrophytes

Authors :
Ouardia Ait-Mohamed
Giselle McCallum
Erwann Corre
Benoît Perez-Lamarque
Chris Bowler
Kyle R. Frischkorn
Hélène Morlon
Andrew K Watson
Guillemette Audren de Kerdrel
Juan José Pierella Karlusich
Richard G. Dorrell
Guillaume Blanc
Adrien Villain
Adriana Alberti
Eric Pelletier
Institut méditerranéen d'océanologie (MIO)
Institut de Recherche pour le Développement (IRD)-Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS)
Institut de biologie de l'ENS Paris (IBENS)
Département de Biologie - ENS Paris
École normale supérieure - Paris (ENS-PSL)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS-PSL)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)
Department of Biology [Concordia]
Concordia University [Montreal]
Institut de Systématique, Evolution, Biodiversité (ISYEB )
Muséum national d'Histoire naturelle (MNHN)-École Pratique des Hautes Études (EPHE)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université des Antilles (UA)
Genoscope - Centre national de séquençage [Evry] (GENOSCOPE)
Université Paris-Saclay-Direction de Recherche Fondamentale (CEA) (DRF (CEA))
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)
Station biologique de Roscoff (SBR)
Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
Fédération de recherche de Roscoff (FR2424)
Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
Source :
Proceedings of the National Academy of Sciences of the United States of America, Proceedings of the National Academy of Sciences of the United States of America, National Academy of Sciences, 2021, 118 (4), pp.e2009974118. ⟨10.1073/pnas.2009974118⟩, Proceedings of the National Academy of Sciences of the United States of America, 2021, 118 (4), pp.e2009974118. ⟨10.1073/pnas.2009974118⟩, Proceedings of the National Academy of Sciences of the United States of America, 2021, 118 (4), ⟨10.1073/pnas.2009974118/-/DCSupplemental⟩, Proceedings of the National Academy of Sciences, Proc Natl Acad Sci U S A
Publication Year :
2021
Publisher :
HAL CCSD, 2021.

Abstract

Horizontal gene transfer (HGT) is an important source of novelty in eukaryotic genomes. This is particularly true for the ochrophytes, a diverse and important group of algae. Previous studies have shown that ochrophytes possess a mosaic of genes derived from bacteria and eukaryotic algae, acquired through chloroplast endosymbiosis and from HGTs, although understanding of the time points and mechanisms underpinning these transfers has been restricted by the depth of taxonomic sampling possible. We harness an expanded set of ochrophyte sequence libraries, alongside automated and manual phylogenetic annotation, in silico modeling, and experimental techniques, to assess the frequency and functions of HGT across this lineage. Through manual annotation of thousands of single-gene trees, we identify continuous bacterial HGT as the predominant source of recently arrived genes in the model diatom Phaeodactylum tricornutum. Using a large-scale automated dataset, a multigene ochrophyte reference tree, and mathematical reconciliation of gene trees, we note a probable elevation of bacterial HGTs at foundational points in diatom evolution, following their divergence from other ochrophytes. Finally, we demonstrate that throughout ochrophyte evolutionary history, bacterial HGTs have been enriched in genes encoding secreted proteins. Our study provides insights into the sources and frequency of HGTs, and functional contributions that HGT has made to algal evolution.

Details

Language :
English
ISSN :
00278424 and 10916490
Database :
OpenAIRE
Journal :
Proceedings of the National Academy of Sciences of the United States of America, Proceedings of the National Academy of Sciences of the United States of America, National Academy of Sciences, 2021, 118 (4), pp.e2009974118. ⟨10.1073/pnas.2009974118⟩, Proceedings of the National Academy of Sciences of the United States of America, 2021, 118 (4), pp.e2009974118. ⟨10.1073/pnas.2009974118⟩, Proceedings of the National Academy of Sciences of the United States of America, 2021, 118 (4), ⟨10.1073/pnas.2009974118/-/DCSupplemental⟩, Proceedings of the National Academy of Sciences, Proc Natl Acad Sci U S A
Accession number :
edsair.doi.dedup.....a6ad9b3ca79852cc1bd526c9595edbd8
Full Text :
https://doi.org/10.1073/pnas.2009974118⟩