Back to Search
Start Over
BZR1 Regulates Brassinosteroid-Mediated Activation of AMT1;2 in Rice
- Source :
- Frontiers in Plant Science, Frontiers in Plant Science, Vol 12 (2021)
- Publication Year :
- 2021
- Publisher :
- Frontiers Media SA, 2021.
-
Abstract
- Although it is known that brassinosteroids (BRs) play pleiotropic roles in plant growth and development, their roles in plant nutrient uptake remain unknown. Here, we hypothesized that BRs directly regulate ammonium uptake by activating the expression of rice AMT1-type genes. Exogenous BR treatment upregulated both AMT1;1 and AMT1;2 expression, while this induction was impaired in the BR-receptor gene BRI1 mutant d61-1. We then focused on brassinazole-resistant 1 (BZR1), a central hub of the BR signaling pathway, demonstrating the important role of this signaling pathway in regulating AMT1 expression and rice roots NH4+ uptake. The results showed that BR-induced expression of AMT1;2 was suppressed in BZR1 RNAi plants but was increased in bzr1-D, a gain-of-function BZR1 mutant. Further EMSA and ChIP analyses showed that BZR1 bound directly to the BRRE motif located in the promoter region of AMT1;2. Moreover, cellular ammonium contents, 15NH4+ uptake, and the regulatory effect of methyl-ammonium on root growth are strongly dependent on the levels of BZR1. Overexpression lines of BRI1 and BZR1 and Genetic combination of them mutants showed that BZR1 activates AMT1;2 expression downstream of BRI1. In conclusion, the findings suggest that BRs regulation of NH4+ uptake in rice involves transcription regulation of ammonium transporters.
- Subjects :
- rice
fungi
Mutant
Plant culture
food and beverages
Promoter
Plant Science
SB1-1110
AMT1
Cell biology
BZR1
chemistry.chemical_compound
brassinosteroids
Downregulation and upregulation
chemistry
ammonium uptake
RNA interference
Transcriptional regulation
Brassinosteroid
Signal transduction
Gene
Original Research
Subjects
Details
- ISSN :
- 1664462X
- Volume :
- 12
- Database :
- OpenAIRE
- Journal :
- Frontiers in Plant Science
- Accession number :
- edsair.doi.dedup.....a72f8153a24beadc1ef972508157f326
- Full Text :
- https://doi.org/10.3389/fpls.2021.665883