Sorry, I don't understand your search. ×
Back to Search Start Over

Workplace interventions to reduce the risk of SARS‐CoV‐2 infection outside of healthcare settings

Authors :
Ana Beatriz Pizarro
Emma Persad
Solange Durao
Barbara Nussbaumer-Streit
Jean S Engela-Volker
Damien McElvenny
Sarah Rhodes
Katie Stocking
Tony Fletcher
Craig Martin
Kukuh Noertjojo
Olivia Sampson
Jos H Verbeek
Karsten Juhl Jørgensen
Matteo Bruschettini
Source :
Cochrane Database Syst Rev, Pizarro, A B, Persad, E, Durao, S, Nussbaumer-Streit, B, Engela-Volker, J S, McElvenny, D, Rhodes, S, Stocking, K, Fletcher, T, Martin, C, Noertjojo, K, Sampson, O, Verbeek, J H, Jørgensen, K J & Bruschettini, M 2022, ' Workplace interventions to reduce the risk of SARS-CoV-2 infection outside of healthcare settings ', Cochrane Database of Systematic Reviews, vol. 2022, no. 5, CD015112 . https://doi.org/10.1002/14651858.CD015112.pub2
Publication Year :
2022
Publisher :
John Wiley & Sons, Ltd, 2022.

Abstract

Background: Although many people infected with SARS-CoV-2 (severe acute respiratory syndrome coronavirus-2) experience no or mild symptoms, some individuals can develop severe illness and may die, particularly older people and those with underlying medical problems. Providing evidence-based interventions to prevent SARS-CoV-2 infection has become more urgent with the spread of more infectious SARS-CoV-2 variants of concern (VoC), and the potential psychological toll imposed by the coronavirus disease 2019 (COVID-19) pandemic. Controlling exposures to occupational hazards is the fundamental method of protecting workers. When it comes to the transmission of viruses, such as SARS-CoV-2, workplaces should first consider control measures that can potentially have the most significant impact. According to the hierarchy of controls, one should first consider elimination (and substitution), then engineering controls, administrative controls, and lastly, personal protective equipment (PPE). Objectives: To assess the benefits and harms of interventions in non-healthcare-related workplaces to reduce the risk of SARS-CoV-2 infection relative to other interventions, or no intervention. Search methods: We searched MEDLINE, Embase, Web of Science, Cochrane COVID-19 Study Register, the Canadian Centre for Occupational Health and Safety (CCOHS), Clinicaltrials.gov, and the International Clinical Trials Registry Platform to 14 September 2021. We will conduct an update of this review in six months. Selection criteria: We included randomised control trials (RCT) and planned to include non-randomised studies of interventions. We included adult workers, both those who come into close contact with clients or customers (e.g. public-facing employees, such as cashiers or taxi drivers), and those who do not, but who could be infected by co-workers. We excluded studies involving healthcare workers. We included any intervention to prevent or reduce workers' exposure to SARS-CoV-2 in the workplace, defining categories of intervention according to the hierarchy of hazard controls, i.e. elimination; engineering controls; administrative controls; personal protective equipment. Data collection and analysis: We used standard Cochrane methods. Our primary outcomes were incidence rate of SARS-CoV-2 infection (or other respiratory viruses), SARS-CoV-2-related mortality, adverse events, and absenteeism from work. Our secondary outcomes were all-cause mortality, quality of life, hospitalisation, and uptake, acceptability, or adherence to strategies. We used the Cochrane RoB 2 tool to assess the risk of bias, and GRADE methods to assess the certainty of evidence for each outcome. Main results: Elimination of exposure interventions. We included one study examining an intervention that focused on elimination of hazards. This study is an open-label, cluster-randomised, non-inferiority trial, conducted in England in 2021. The study compared standard 10-day self-isolation after contact with an infected person to a new strategy of daily rapid antigen testing and staying at work if the test is negative (test-based attendance). The trialists hypothesised that this would lead to a similar rate of infections, but lower COVID-related absence. Staff (N = 11,798) working at 76 schools were assigned to standard isolation, and staff (N = 12,229) at 86 schools to the test-based attendance strategy. The results between test-based attendance and standard 10-day self-isolation were inconclusive for the rate of symptomatic PCR-positive SARS-COV-2 infection rate ratio ((RR) 1.28, 95% confidence interval (CI) 0.74 to 2.21; 1 study, very low-certainty evidence)). The results between test-based attendance and standard 10-day self-isolation were inconclusive for the rate of any PCR-positive SARS-COV-2 infection (RR 1.35, 95% CI 0.82 to 2.21; 1 study, very low-certainty evidence). COVID-related absenteeism rates were 3704 absence days in 566,502 days-at-risk (6.5 per 1000 days at risk) in the control group and 2932 per 539,805 days-at-risk (5.4 per 1000 days at risk) in the intervention group (RR 0.83; 95% CI 0.55 to 1.25). The certainty of the evidence was downgraded to low, due to imprecision. Uptake of the intervention was 71 % in the intervention group, but not reported for the control intervention. The trial did not measure other outcomes, SARS-CoV-2-related mortality, adverse events, all-cause mortality, quality of life, and hospitalisation. We found one ongoing RCT about screening in schools, using elimination of hazard strategies. Personal protective equipment. We found one ongoing non-randomised study on the effects of closed face shields to prevent COVID-19 transmission. Other intervention categories. We did not find studies in the other intervention categories. Authors' conclusions: We are uncertain whether a test-based attendance policy affects rates of PCR-postive SARS-CoV-2 infection (any infection; symptomatic infection) compared to standard 10-day self-isolation amongst school and college staff. Test-based attendance policy may result in little to no difference in absence rates compared to standard 10-day self-isolation. As a large part of the population is exposed in the case of a pandemic, an apparently small relative effect that would not be worthwhile from the individual perspective may still affect many people, and thus, become an important absolute effect from the enterprise or societal perspective. The included study did not report on any other primary outcomes of our review, i.e. SARS-CoV-2-related mortality and adverse events. No completed studies were identified on any other interventions specified in this review, but two eligible studies are ongoing. More controlled studies are needed on testing and isolation strategies, and working from home, as these have important implications for work organisations.

Details

Language :
English
Database :
OpenAIRE
Journal :
Cochrane Database Syst Rev, Pizarro, A B, Persad, E, Durao, S, Nussbaumer-Streit, B, Engela-Volker, J S, McElvenny, D, Rhodes, S, Stocking, K, Fletcher, T, Martin, C, Noertjojo, K, Sampson, O, Verbeek, J H, Jørgensen, K J & Bruschettini, M 2022, ' Workplace interventions to reduce the risk of SARS-CoV-2 infection outside of healthcare settings ', Cochrane Database of Systematic Reviews, vol. 2022, no. 5, CD015112 . https://doi.org/10.1002/14651858.CD015112.pub2
Accession number :
edsair.doi.dedup.....a7868ec64cc724371d3ed7c66c510ea9
Full Text :
https://doi.org/10.1002/14651858.CD015112.pub2