Back to Search
Start Over
Solving haplotyping inference parsimony problem using a new basic polynomial formulation
- Source :
- Computers & Mathematics with Applications, Computers & Mathematics with Applications, Elsevier, 2008, 55 (5), pp.900-911, Computers & mathematics with applications (1987) 55 (2008): 900–911., info:cnr-pdr/source/autori:Bertolazzi, P.; Godi, A.; Labbè, M.; Tininini, L./titolo:Solving haplotyping inference parsimony problem using a new basic polynomial formulation/doi:/rivista:Computers & mathematics with applications (1987)/anno:2008/pagina_da:900/pagina_a:911/intervallo_pagine:900–911/volume:55, Computers & mathematics with applications (1987) (2007)., info:cnr-pdr/source/autori:Bertolazzi, P.; Godi, A.; Labbe`, M.; Tininini, L./titolo:Solving haplotyping inference parsimony problem using a new basic polynomial formulation/doi:/rivista:Computers & mathematics with applications (1987)/anno:2007/pagina_da:/pagina_a:/intervallo_pagine:/volume
- Publication Year :
- 2008
- Publisher :
- Elsevier BV, 2008.
-
Abstract
- Similarity and diversity among individuals of the same species are expressed in small DNA variations called Single Nucleotide Polymorphism. The knowledge of SNP phase gives rise to the haplotyping problem that in the parsimonious version states to infer the minimum number of haplotypes from a given set of genotype data. ILP technique represents a good resolution strategy for this interesting combinatorial problem whose main limit lies in its NP-hardness. In this paper we present a new polynomial model for the haplotyping inference by parsimony problem characterized by the original use of a maximum formulation jointly with a good heuristic solution. This approach showed to be a robust basic model that can be used as starting point for more sophisticated ILP techniques like branch and cut and polyhedral studies.
- Subjects :
- Polynomial
[INFO.INFO-RO] Computer Science [cs]/Operations Research [cs.RO]
0211 other engineering and technologies
Inference
0102 computer and information sciences
02 engineering and technology
01 natural sciences
Polynomial and rational function modeling
TheoryofComputation_ANALYSISOFALGORITHMSANDPROBLEMCOMPLEXITY
Modelling and Simulation
Limit (mathematics)
Integer programming
ComputingMilieux_MISCELLANEOUS
Mathematics
021103 operations research
Heuristic
Haplotyping
[INFO.INFO-RO]Computer Science [cs]/Operations Research [cs.RO]
Resolution (logic)
Computational Mathematics
Integer linear programming
ComputingMethodologies_PATTERNRECOGNITION
Computational Theory and Mathematics
Polynomial formulations
010201 computation theory & mathematics
Modeling and Simulation
Branch and cut
Algorithm
Subjects
Details
- ISSN :
- 08981221
- Volume :
- 55
- Issue :
- 5
- Database :
- OpenAIRE
- Journal :
- Computers & Mathematics with Applications
- Accession number :
- edsair.doi.dedup.....a79c37640d64fbb90cd286c608380472
- Full Text :
- https://doi.org/10.1016/j.camwa.2006.12.095