Back to Search Start Over

Expression and Localization of sPLA2-III in the Rat CNS

Authors :
Hui Yang
Nikhat J. Siddiqi
A. S. Alhomida
Wei-Yi Ong
Source :
Neurochemical Research. 38:753-760
Publication Year :
2013
Publisher :
Springer Science and Business Media LLC, 2013.

Abstract

Phospholipases A(2) (PLA(2)) are enzymes that cleave the sn-2 bond of membrane phospholipids to yield free fatty acids and lysophospholipids. Secretory PLA2-III (sPLA(2)-III) has been suggested to be important for neuronal differentiation, growth and survival, and is highly expressed in the spinal cord. The aim of this study is to elucidate its expression and distribution in different regions of the adult rat CNS. Quantitative RT-PCR analyses showed high levels of sPLA(2)-III mRNA expression in the brainstem and spinal cord and low expression in the olfactory bulb. Western blot analyses showed high level of expression in the brainstem, spinal cord and cerebral neocortex. A dense band corresponding to the catalytically active, mature/cleaved form, and a faint band corresponding to the full length sPLA(2)-III were detected in post-mitochondrial supernatants, from different parts of the CNS. Subcellular fractionation of spinal cord homogenates showed that sPLA(2)-III protein is present in the 'light membrane/cytosol' fraction, but not the nucleus, synaptosomal membrane or synaptic vesicle-enriched fractions. sPLA(2)-III was immunolocalized to neurons in the cerebral neocortex, Purkinje neurons in the cerebellar cortex, periaqueductal gray, red nucleus, spinal trigeminal nucleus and dorsal horn of the spinal cord. Electron microscopy of the spinal cord and cerebral neocortex showed that sPLA(2)-III was localized in dendrites or dendritic spines, that formed asymmetrical synapses with unlabeled, putatively glutamatergic, axon terminals. The localization of mature/cleaved form of sPLA(2)-III in postsynaptic structures suggest a physiological role of the enzyme in neurotransmission or synaptic plasticity.

Details

ISSN :
15736903 and 03643190
Volume :
38
Database :
OpenAIRE
Journal :
Neurochemical Research
Accession number :
edsair.doi.dedup.....a7ac60a87cd7a244b8ae19acec67013e