Back to Search Start Over

Missense mutation in flavin-containing mono-oxygenase 3 gene, FMO3, underlies fish-odour syndrome

Authors :
Ian Phillips
Colin T. Dolphin
Elizabeth A. Shephard
Robert L. Smith
Azara Janmohamed
Source :
Nature genetics. 17(4)
Publication Year :
1997

Abstract

Individuals with primary trimethylaminuria exhibit a body odour reminiscent of rotting fish, due to excessive excretion of trimethylamine (TMA; refs 1-3). The disorder, colloquially known as fish-odour syndrome, is inherited recessively as a defect in hepatic N-oxidation of dietary-derived TMA and cannot be considered benign, as sufferers may display a variety of psychosocial reactions, ranging from social isolation of clinical depression and attempted suicide. TMA oxidation is catalyzed by flavin-containing mono-oxygenase (FMO; refs 7,8), and tissue localization and functional studies have established FMO3 as the form most likely to be defective in fish-odour syndrome. Direct sequencing of the coding exons of FMO3 amplified from a patient with fish-odour syndrome identified two missense mutations. Although one of these represented a common polymorphism, the other, a C-->T transition in exon 4, was found only in an affected pedigree, in which it segregated with the disorder. The latter mutation predicts a proline-->leucine substitution at residue 153 and abolishes FMO3 catalytic activity. Our results indicate that defects in FMO3 underlie fish-odour syndrome and that the Pro 153-->Leu 153 mutation described here is a cause of this distressing condition.

Details

ISSN :
10614036
Volume :
17
Issue :
4
Database :
OpenAIRE
Journal :
Nature genetics
Accession number :
edsair.doi.dedup.....a7fecccd69091498d0b33976cb7d85e7