Back to Search Start Over

Catalytic activity tunable ceria nanoparticles prevent chemotherapy-induced acute kidney injury without interference with chemotherapeutics

Authors :
Chunyan Fang
Daishun Ling
Jiyoung Lee
Fan Xia
Bo Yang
Qinjie Weng
Jiafeng Ren
Heng Sun
Jincheng Wang
Fangyuan Li
Xia Guo
An Xie
Hongwei Liao
Source :
Nature Communications, Nature Communications, Vol 12, Iss 1, Pp 1-14 (2021)
Publication Year :
2021
Publisher :
Springer Science and Business Media LLC, 2021.

Abstract

Acute kidney injury (AKI) is a prevalent and lethal adverse event that severely affects cancer patients receiving chemotherapy. It is correlated with the collateral damage to renal cells caused by reactive oxygen species (ROS). Currently, ROS management is a practical strategy that can reduce the risk of chemotherapy-related AKI, but at the cost of chemotherapeutic efficacy. Herein, we report catalytic activity tunable ceria nanoparticles (CNPs) that can prevent chemotherapy-induced AKI without interference with chemotherapeutic agents. Specifically, in the renal cortex, CNPs exhibit catalytic activity that decomposes hydrogen peroxide, and subsequently regulate the ROS-involved genes by activating the Nrf2/Keap1 signaling pathway. These restore the redox homeostasis for the protection of kidney tubules. Under an acidic tumor microenvironment, CNPs become inert due to the excessive H+ that disrupts the re-exposure of active catalytic sites, allowing a buildup of chemotherapy-mediated ROS generation to kill cancer cells. As ROS-modulating agents, CNPs incorporated with context-dependent catalytic activity, hold a great potential for clinical prevention and treatment of AKI in cancer patients.<br />Reactive oxygen species management is a practical strategy that can reduce the risk of chemotherapy-induced acute kidney injury, but at the cost of chemotherapeutic efficacy. Here the authors report catalytic activity tunable ceria nanoparticles as context-dependent reactive oxygen species scavengers, which can prevent chemotherapy-induced acute kidney injury without interfering with chemotherapeutic agents.

Details

ISSN :
20411723
Volume :
12
Database :
OpenAIRE
Journal :
Nature Communications
Accession number :
edsair.doi.dedup.....a8c86093e65309592b13f44fe71e4bf9
Full Text :
https://doi.org/10.1038/s41467-021-21714-2