Back to Search
Start Over
Power-law distribution of degree–degree distance: A better representation of the scale-free property of complex networks
- Source :
- Proc Natl Acad Sci U S A
- Publication Year :
- 2020
- Publisher :
- Proceedings of the National Academy of Sciences, 2020.
-
Abstract
- Whether real-world complex networks are scale free or not has long been controversial. Recently, in Broido and Clauset [A. D. Broido, A. Clauset, Nat. Commun. 10, 1017 (2019)], it was claimed that the degree distributions of real-world networks are rarely power law under statistical tests. Here, we attempt to address this issue by defining a fundamental property possessed by each link, the degree–degree distance, the distribution of which also shows signs of being power law by our empirical study. Surprisingly, although full-range statistical tests show that degree distributions are not often power law in real-world networks, we find that in more than half of the cases the degree–degree distance distributions can still be described by power laws. To explain these findings, we introduce a bidirectional preferential selection model where the link configuration is a randomly weighted, two-way selection process. The model does not always produce solid power-law distributions but predicts that the degree–degree distance distribution exhibits stronger power-law behavior than the degree distribution of a finite-size network, especially when the network is dense. We test the strength of our model and its predictive power by examining how real-world networks evolve into an overly dense stage and how the corresponding distributions change. We propose that being scale free is a property of a complex network that should be determined by its underlying mechanism (e.g., preferential attachment) rather than by apparent distribution statistics of finite size. We thus conclude that the degree–degree distance distribution better represents the scale-free property of a complex network.
- Subjects :
- 0303 health sciences
Multidisciplinary
Scale (ratio)
Complex network
Degree distribution
Preferential attachment
01 natural sciences
Power law
03 medical and health sciences
symbols.namesake
Physical Sciences
0103 physical sciences
symbols
Probability distribution
Pareto distribution
Statistical physics
010306 general physics
030304 developmental biology
Statistical hypothesis testing
Mathematics
Subjects
Details
- ISSN :
- 10916490 and 00278424
- Volume :
- 117
- Database :
- OpenAIRE
- Journal :
- Proceedings of the National Academy of Sciences
- Accession number :
- edsair.doi.dedup.....a8e5d4087ce0658710b84cf6b46c752b
- Full Text :
- https://doi.org/10.1073/pnas.1918901117