Back to Search Start Over

Spontaneous Spatial Correlation of Elastic Modulus in Jammed Epithelial Monolayers Observed by AFM

Authors :
Yukitaka Ishimoto
Mihoko Kajita
Yuki Ochi
Takaharu Okajima
Yasuyuki Fujita
Masahiro Tuchiya
Yuki Fujii
Source :
Biophysical Journal. 116:1152-1158
Publication Year :
2019
Publisher :
Elsevier BV, 2019.

Abstract

For isolated single cells on a substrate, the intracellular stiffness, which is often measured as the Young’s modulus, E, by atomic force microscopy (AFM), depends on the substrate rigidity. However, little is known about how the E of cells is influenced by the surrounding cells in a cell population system in which cells physically and tightly contact adjacent cells. In this study, we investigated the spatial heterogeneities of E in a jammed epithelial monolayer in which cell migration was highly inhibited, allowing us to precisely measure the spatial distribution of E in large-scale regions by AFM. The AFM measurements showed that E can be characterized using two spatial correlation lengths: the shorter correlation length, l(S), is within the single cell size, whereas the longer correlation length, l(L), is longer than the distance between adjacent cells and corresponds to the intercellular correlation of E. We found that l(L) decreased significantly when the actin filaments were disrupted or calcium ions were chelated using chemical treatments, and the decreased l(L) recovered to the value in the control condition after the treatments were washed out. Moreover, we found that l(L) decreased significantly when E-cadherin was knocked down. These results indicate that the observed long-range correlation of E is not fixed within the jammed state but inherently arises from the formation of a large-scale actin filament structure via E-cadherin-dependent cell-cell junctions.

Details

ISSN :
00063495
Volume :
116
Database :
OpenAIRE
Journal :
Biophysical Journal
Accession number :
edsair.doi.dedup.....a8f839dffa18e7d9b9cb2ea39ba9f9cb
Full Text :
https://doi.org/10.1016/j.bpj.2019.01.037