Back to Search
Start Over
Masses and ages for metal-poor stars
- Source :
- Astronomy and Astrophysics-A&A, Astronomy and Astrophysics-A&A, EDP Sciences, 2019, 627, pp.A173. ⟨10.1051/0004-6361/201834081⟩, Astronomy and Astrophysics-A&A, 2019, 627, pp.A173. ⟨10.1051/0004-6361/201834081⟩, Valentini, M, Chiappini, C, Bossini, D, Miglio, A, Davies, G R, Mosser, B, Elsworth, Y P, Mathur, S, Garcia, R A, Girardi, L, Rodrigues, T S, Steinmetz, M & Vallenari, A 2019, ' Masses and ages for metal-poor stars : A pilot programme combining asteroseismology and high-resolution spectroscopic follow-up of RAVE halo stars ', Astronomy & Astrophysics, vol. 627, no. July, A173 . https://doi.org/10.1051/0004-6361/201834081
- Publication Year :
- 2018
- Publisher :
- arXiv, 2018.
-
Abstract
- Very metal-poor halo stars are the best candidates for being among the oldest objects in our Galaxy. Samples of halo stars with age determination and detailed chemical composition measurements provide key information for constraining the nature of the first stellar generations and the nucleosynthesis in the metal-poor regime.} Age estimates are very uncertain and are available for only a small number of metal-poor stars. Here we present the first results of a pilot program aimed at deriving precise masses, ages and chemical abundances for metal-poor halo giants using asteroseismology, and high-resolution spectroscopy. We obtained high-resolution UVES spectra for four metal-poor RAVE stars observed by the K2 satellite. Seismic data obtained from K2 light curves helped improving spectroscopic temperatures, metallicities and individual chemical abundances. Mass and ages were derived using the code PARAM, investigating the effects of different assumptions (e.g. mass loss, [alpha/Fe]-enhancement). Orbits were computed using Gaia DR2 data. {The stars are found to be "normal" metal-poor halo stars (i.e. non C-enhanced), with an abundance pattern typical of old stars (i.e. alpha and Eu-enhanced), and with masses in the 0.80-1.0 M_sun range. The inferred model-dependent stellar ages are found to range from 7.4 to 13.0 Gyr, with uncertainties of ~ 30%-35%. We also provide revised masses and ages for metal-poor stars with Kepler seismic data from APOGEE survey and a set of M4 stars. {The present work shows that the combination of asteroseismology and high-resolution spectroscopy provides precise ages in the metal-poor regime. Most of the stars analysed in the present work (covering the metallicity range of [Fe/H] ~ -0.8 to -2 dex), are very old >9 Gyr (14 out of 19 stars ), and all of them are older than > 5 Gyr (within the 68 percentile confidence level).<br />21 pages, 19 figures. Accepted
- Subjects :
- TELESCOPE
stars: abundances
Metallicity
fundamental parameters [stars]
FOS: Physical sciences
Context (language use)
Astrophysics
asteroseismology
Astrophysics::Cosmology and Extragalactic Astrophysics
CHEMICAL-COMPOSITION
01 natural sciences
7. Clean energy
Asteroseismology
PARAMETERS
Nucleosynthesis
0103 physical sciences
Astrophysics::Solar and Stellar Astrophysics
010303 astronomy & astrophysics
RICH
Astrophysics::Galaxy Astrophysics
Solar and Stellar Astrophysics (astro-ph.SR)
MISSION
Physics
FREQUENCIES
010308 nuclear & particles physics
1ST STARS
Astronomy and Astrophysics
Light curve
Galaxy
abundances [stars]
Stars
Astrophysics - Solar and Stellar Astrophysics
13. Climate action
Space and Planetary Science
DISCOVERY
MILKY
Halo
stars: fundamental parameters
Astrophysics::Earth and Planetary Astrophysics
STELLAR PHOTOMETRY
[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
Subjects
Details
- ISSN :
- 00046361
- Database :
- OpenAIRE
- Journal :
- Astronomy and Astrophysics-A&A, Astronomy and Astrophysics-A&A, EDP Sciences, 2019, 627, pp.A173. ⟨10.1051/0004-6361/201834081⟩, Astronomy and Astrophysics-A&A, 2019, 627, pp.A173. ⟨10.1051/0004-6361/201834081⟩, Valentini, M, Chiappini, C, Bossini, D, Miglio, A, Davies, G R, Mosser, B, Elsworth, Y P, Mathur, S, Garcia, R A, Girardi, L, Rodrigues, T S, Steinmetz, M & Vallenari, A 2019, ' Masses and ages for metal-poor stars : A pilot programme combining asteroseismology and high-resolution spectroscopic follow-up of RAVE halo stars ', Astronomy & Astrophysics, vol. 627, no. July, A173 . https://doi.org/10.1051/0004-6361/201834081
- Accession number :
- edsair.doi.dedup.....a943b88482ed3f7efee4f008b53f5996
- Full Text :
- https://doi.org/10.48550/arxiv.1808.08569