Back to Search Start Over

RhoA GTPase oxidation stimulates cell proliferation via nuclear factor-κB activation

Authors :
Jae-Gyu Kim
Pyeung-Hyeun Kim
Myoen Choe
Goo-Young Seo
Hyung-Joo Kwon
Guang Wu
Jae-Bong Park
Seung Goo Kang
Sung Chan Kim
Jae-Yong Lee
Jaebong Kim
Yohan Park
Source :
Free radical biologymedicine. 103
Publication Year :
2016

Abstract

Reactive oxygen species (ROS) produced by many kinds of stimuli are essential for cellular signaling including cell proliferation. The dysregulation of ROS, therefore, is related to a variety of diseases including cancer. However, it was not clearly elucidated how ROS regulate cell proliferation and tumorigenesis. In this study, we investigated a mechanism by which the oxidation of RhoA GTPase regulates nuclear factor-κB (NF-κB) and cell proliferation. Hydrogen peroxide activated NF-κB and RhoA GTPase, but did not activate RhoA C16/20A mutant, an oxidation-resistant form. Remarkably, the oxidation of RhoA reduced its affinity towards RhoGDI, leading to the dissociation of RhoA-RhoGDI complex. Si-Vav2, a guanine nucleotide exchange factor (GEF), inhibited RhoA activation upon hydrogen peroxide. The oxidized RhoA (oxRhoA)-GTP was readily bound to IκB kinase γ (IKKγ), whereas oxidized RhoGDI did not bind to IKKγ. The oxRhoA-GTP bound to IKKγ activated IKKβ, leading to IκB phosphorylation and degradation, consequently NF-κB activation. Hydrogen peroxide induced cell proliferation, but RhoA C16/20A mutant suppressed cell proliferation and tumorigenesis. Conclusively, RhoA oxidation at Cys16/20 is critically involved in cell proliferation and tumorigenesis through NF-κB activation in response to ROS.

Details

ISSN :
18734596
Volume :
103
Database :
OpenAIRE
Journal :
Free radical biologymedicine
Accession number :
edsair.doi.dedup.....a968c5d1289166eb390d2608f2411ac5