Back to Search Start Over

Packed-Ensembles for Efficient Uncertainty Estimation

Authors :
Laurent, Olivier
Lafage, Adrien
Tartaglione, Enzo
Daniel, Geoffrey
Martinez, Jean-Marc
Bursuc, Andrei
Franchi, Gianni
Service de Génie Logiciel pour la Simulation (SGLS)
Département de Modélisation des Systèmes et Structures (DM2S)
CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) (CEA-DES (ex-DEN))
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) (CEA-DES (ex-DEN))
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay
Unité d'Informatique et d'Ingénierie des Systèmes (U2IS)
École Nationale Supérieure de Techniques Avancées (ENSTA Paris)
Laboratoire Traitement et Communication de l'Information (LTCI)
Institut Mines-Télécom [Paris] (IMT)-Télécom Paris
Département Images, Données, Signal (IDS)
Télécom ParisTech
Multimédia (MM)
Institut Mines-Télécom [Paris] (IMT)-Télécom Paris-Institut Mines-Télécom [Paris] (IMT)-Télécom Paris
Valeo.ai
VALEO
Source :
International Conference on Learning Representations, International Conference on Learning Representations, May 2023, Kigali, France
Publication Year :
2023
Publisher :
HAL CCSD, 2023.

Abstract

Deep Ensembles (DE) are a prominent approach for achieving excellent performance on key metrics such as accuracy, calibration, uncertainty estimation, and out-of-distribution detection. However, hardware limitations of real-world systems constrain to smaller ensembles and lower-capacity networks, significantly deteriorating their performance and properties. We introduce Packed-Ensembles (PE), a strategy to design and train lightweight structured ensembles by carefully modulating the dimension of their encoding space. We leverage grouped convolutions to parallelize the ensemble into a single shared backbone and forward pass to improve training and inference speeds. PE is designed to operate within the memory limits of a standard neural network. Our extensive research indicates that PE accurately preserves the properties of DE, such as diversity, and performs equally well in terms of accuracy, calibration, out-of-distribution detection, and robustness to distribution shift. We make our code available at https://github.com/ENSTA-U2IS/torch-uncertainty.<br />Comment: Published as a conference paper at ICLR 2023 (notable 25%)

Details

Language :
English
Database :
OpenAIRE
Journal :
International Conference on Learning Representations, International Conference on Learning Representations, May 2023, Kigali, France
Accession number :
edsair.doi.dedup.....a96d09878cada171436d791e9206fe10