Back to Search Start Over

Infeasibility in augmented lagrangian methods

Authors :
Leandro da Fonseca Prudente
Martínez Pérez, José Mario, 1948
Andreani, Roberto
Santos, Sandra Augusta
Birgin, Ernesto Julián Goldberg
Haeser, Gabriel
Universidade Estadual de Campinas. Instituto de Matemática, Estatística e Computação Científica
Programa de Pós-Graduação em Matemática Aplicada
UNIVERSIDADE ESTADUAL DE CAMPINAS
Source :
Biblioteca Digital de Teses e Dissertações da Universidade Estadual de Campinas (UNICAMP), Universidade Estadual de Campinas (UNICAMP), instacron:UNICAMP
Publication Year :
2012

Abstract

Orientador: José Mario Martínez Pérez Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matemática, Estatística e Computação Científica Resumo: Algoritmos de programação não-linear práticos podem convergir para pontos inviáveis mesmo quando o problema a ser resolvido é viável. Quando isso ocorre, é natural que o usuário mude o ponto inicial e/ou parâmetros algorítmicos e reaplique o método na tentativa de encontrar uma solução viável e ótima. Desta forma, o ideal é que um algoritmo não só seja eficiente em encontrar soluções viáveis, mas também que detecte rapidamente quando ele está fadado a convergir para um ponto inviável. Na tentativa de atingir esse objetivo, apresentamos modificações em um algoritmo baseado em Lagrangiano aumentado de modo que, no caso de convergência para um ponto inviável, os subproblemas são resolvidos com tolerâncias moderadas e, mesmo assim, as propriedades de convergência global são mantidas. Experimentos numéricos são apresentados Abstract Practical Nonlinear Programming algorithms may converge to infeasible points even when the problem to be solved is feasible. When this occurs, it is natural for the user to change the starting point and/or algorithmic parameters and reapply the method in an attempt to find a feasible and optimal solution. Thus, the ideal is that an algorithm is eficient not only in finding feasible solutions, but also in quickly detecting when it is fated to converge to an infeasible point. In pursuit of this goal, we present modifications of an algorithm based on Augmented Lagrangians so that, in the case of convergence to an infeasible point, the subproblems are solved with moderate tolerances and, even then, the global convergence properties are maintained. Numerical experiments are presented Doutorado Matemática Aplicada Doutor em Matemática Aplicada

Details

Language :
Portuguese
Database :
OpenAIRE
Journal :
Biblioteca Digital de Teses e Dissertações da Universidade Estadual de Campinas (UNICAMP), Universidade Estadual de Campinas (UNICAMP), instacron:UNICAMP
Accession number :
edsair.doi.dedup.....a9755b7391597e2f12591bff9e1c452c