Back to Search
Start Over
Efficient Incremental Computation of Aggregations over Sliding Windows
- Source :
- 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (SIGKDD 2021), 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (SIGKDD 2021), Aug 2021, Singapore, Singapore. pp.2136-2144, ⟨10.1145/3447548.3467360⟩, KDD 2021-27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD 2021-27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Aug 2021, Singapore (Virtual), Singapore. pp.2136-2144, ⟨10.1145/3447548.3467360⟩, Acta Médica Costarricense, 37ème Conférence sur la Gestion de Données – Principes, Technologies et Applications (BDA), 37ème Conférence sur la Gestion de Données – Principes, Technologies et Applications (BDA), Oct 2021, Virtual, Singapore. ⟨10.1145/3447548.3467360⟩, KDD, BDA 2021-37e Conférence sur la Gestion de Données-Principes, Technologies et Applications, BDA 2021-37e Conférence sur la Gestion de Données-Principes, Technologies et Applications, Oct 2021, Virtual, France, 37ème Conférence sur la Gestion de Données – Principes, Technologies et Applications (BDA), Oct 2021, Virtual, Singapore
- Publication Year :
- 2021
- Publisher :
- HAL CCSD, 2021.
-
Abstract
- International audience; Computing aggregation over sliding windows, i.e., finite subsets of an unbounded stream, is a core operation in streaming analytics. We propose PBA (Parallel Boundary Aggregator), a novel parallel algorithm that groups continuous slices of streaming values into chunks and exploits two buffers, cumulative slice aggregations and left cumulative slice aggregations, to compute sliding window aggregations efficiently. PBA runs in (1) time, performing at most 3 merging operations per slide while consuming () space for windows with partial aggregations. Our empirical experiments demonstrate that PBA can improve throughput up to 4× while reducing latency, compared to state-of-the-art algorithms.
- Subjects :
- Data stream
Computer science
Computation
Parallel algorithm
Latency (audio)
Boundary (topology)
02 engineering and technology
Parallel computing
Streaming Algorithm
Data Stream
020204 information systems
Sliding window protocol
[INFO.INFO-IR]Computer Science [cs]/Information Retrieval [cs.IR]
0202 electrical engineering, electronic engineering, information engineering
Sliding Window Aggregation
020201 artificial intelligence & image processing
[INFO.INFO-IR] Computer Science [cs]/Information Retrieval [cs.IR]
Throughput (business)
Streaming algorithm
Subjects
Details
- Language :
- English
- Database :
- OpenAIRE
- Journal :
- 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (SIGKDD 2021), 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (SIGKDD 2021), Aug 2021, Singapore, Singapore. pp.2136-2144, ⟨10.1145/3447548.3467360⟩, KDD 2021-27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD 2021-27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Aug 2021, Singapore (Virtual), Singapore. pp.2136-2144, ⟨10.1145/3447548.3467360⟩, Acta Médica Costarricense, 37ème Conférence sur la Gestion de Données – Principes, Technologies et Applications (BDA), 37ème Conférence sur la Gestion de Données – Principes, Technologies et Applications (BDA), Oct 2021, Virtual, Singapore. ⟨10.1145/3447548.3467360⟩, KDD, BDA 2021-37e Conférence sur la Gestion de Données-Principes, Technologies et Applications, BDA 2021-37e Conférence sur la Gestion de Données-Principes, Technologies et Applications, Oct 2021, Virtual, France, 37ème Conférence sur la Gestion de Données – Principes, Technologies et Applications (BDA), Oct 2021, Virtual, Singapore
- Accession number :
- edsair.doi.dedup.....a979a76a0784771b7fbaca8405811304