Back to Search
Start Over
MicroRNA-494-3p inhibits formation of fast oxidative muscle fibres by targeting E1A-binding protein p300 in human-induced pluripotent stem cells
- Source :
- Scientific Reports, Vol 11, Iss 1, Pp 1-14 (2021), Scientific Reports
- Publication Year :
- 2021
- Publisher :
- Springer Science and Business Media LLC, 2021.
-
Abstract
- MYOD-induced microRNA-494-3p expression inhibits fast oxidative myotube formation by downregulating myosin heavy chain 2 (MYH2) in human induced pluripotent stem cells (hiPSCs) during skeletal myogenesis. However, the molecular mechanisms regulating MYH2 expression via miR-494-3p remain unknown. Here, using bioinformatic analyses, we show that miR-494-3p potentially targets the transcript of the E1A-binding protein p300 at its 3′-untranslated region (UTR). Myogenesis in hiPSCs with the Tet/ON-myogenic differentiation 1 (MYOD1) gene (MyoD-hiPSCs) was induced by culturing them in doxycycline-supplemented differentiation medium for 7 days. p300 protein expression decreased after transient induction of miR-494-3p during myogenesis. miR-494-3p mimics decreased the levels of p300 and its downstream targets MYOD and MYH2 and myotube formation efficiency. p300 knockdown decreased myotube formation efficiency, MYH2 expression, and basal oxygen consumption rate. The binding of miR-494-3p to the wild type p300 3′-UTR, but not the mutated site, was confirmed using luciferase assay. Overexpression of p300 rescued the miR-494-3p mimic-induced phenotype in MyoD-hiPSCs. Moreover, miR-494-3p mimic reduced the levels of p300, MYOD, and MYH2 in skeletal muscles in mice. Thus, miR-494-3p might modulate MYH2 expression and fast oxidative myotube formation by directly regulating p300 levels during skeletal myogenesis in MyoD-hiPSCs and murine skeletal muscle tissues.
- Subjects :
- Male
0301 basic medicine
Cell biology
Science
Induced Pluripotent Stem Cells
Muscle Fibers, Skeletal
Biophysics
Down-Regulation
Stem cells
Muscle Development
MyoD
Article
Cell Line
Myoblasts
Mice
03 medical and health sciences
Endocrinology
0302 clinical medicine
Developmental biology
microRNA
Myosin
medicine
Animals
Humans
Muscle, Skeletal
3' Untranslated Regions
Cell Proliferation
MyoD Protein
Gene knockdown
Multidisciplinary
Molecular medicine
Chemistry
Myogenesis
Binding protein
Skeletal muscle
Cell Differentiation
Mice, Inbred C57BL
MicroRNAs
Oxidative Stress
030104 developmental biology
medicine.anatomical_structure
Medicine
Stem cell
E1A-Associated p300 Protein
030217 neurology & neurosurgery
Subjects
Details
- ISSN :
- 20452322
- Volume :
- 11
- Database :
- OpenAIRE
- Journal :
- Scientific Reports
- Accession number :
- edsair.doi.dedup.....a9af8c121c285e42e21b206c92ccece8
- Full Text :
- https://doi.org/10.1038/s41598-020-80742-y