Back to Search
Start Over
Novel Role for the AnxA1-Fpr2/ALX Signaling Axis as a Key Regulator of Platelet Function to Promote Resolution of Inflammation
- Source :
- Circulation, CONICET Digital (CONICET), Consejo Nacional de Investigaciones Científicas y Técnicas, instacron:CONICET
- Publication Year :
- 2019
- Publisher :
- Ovid Technologies (Wolters Kluwer Health), 2019.
-
Abstract
- Supplemental Digital Content is available in the text.<br />Background: Ischemia reperfusion injury (I/RI) is a common complication of cardiovascular diseases. Resolution of detrimental I/RI-generated prothrombotic and proinflammatory responses is essential to restore homeostasis. Platelets play a crucial part in the integration of thrombosis and inflammation. Their role as participants in the resolution of thromboinflammation is underappreciated; therefore we used pharmacological and genetic approaches, coupled with murine and clinical samples, to uncover key concepts underlying this role. Methods: Middle cerebral artery occlusion with reperfusion was performed in wild-type or annexin A1 (AnxA1) knockout (AnxA1−/−) mice. Fluorescence intravital microscopy was used to visualize cellular trafficking and to monitor light/dye–induced thrombosis. The mice were treated with vehicle, AnxA1 (3.3 mg/kg), WRW4 (1.8 mg/kg), or all 3, and the effect of AnxA1 was determined in vivo and in vitro. Results: Intravital microscopy revealed heightened platelet adherence and aggregate formation post I/RI, which were further exacerbated in AnxA1−/− mice. AnxA1 administration regulated platelet function directly (eg, via reducing thromboxane B2 and modulating phosphatidylserine expression) to promote cerebral protection post-I/RI and act as an effective preventative strategy for stroke by reducing platelet activation, aggregate formation, and cerebral thrombosis, a prerequisite for ischemic stroke. To translate these findings into a clinical setting, we show that AnxA1 plasma levels are reduced in human and murine stroke and that AnxA1 is able to act on human platelets, suppressing classic thrombin-induced inside-out signaling events (eg, Akt activation, intracellular calcium release, and Ras-associated protein 1 [Rap1] expression) to decrease αIIbβ3 activation without altering its surface expression. AnxA1 also selectively modifies cell surface determinants (eg, phosphatidylserine) to promote platelet phagocytosis by neutrophils, thereby driving active resolution. (n=5–13 mice/group or 7–10 humans/group.) Conclusions: AnxA1 affords protection by altering the platelet phenotype in cerebral I/RI from propathogenic to regulatory and reducing the propensity for platelets to aggregate and cause thrombosis by affecting integrin (αIIbβ3) activation, a previously unknown phenomenon. Thus, our data reveal a novel multifaceted role for AnxA1 to act both as a therapeutic and a prophylactic drug via its ability to promote endogenous proresolving, antithromboinflammatory circuits in cerebral I/RI. Collectively, these results further advance our knowledge and understanding in the field of platelet and resolution biology.
- Subjects :
- Male
Integrins
Regulator
Corrections
Mice
0302 clinical medicine
Formyl peptide receptor
Original Research Articles
Platelet
Annexin A1
formyl peptide receptor
Aged, 80 and over
0303 health sciences
biology
Infarction, Middle Cerebral Artery
purl.org/becyt/ford/3.1 [https]
Middle Aged
stroke
3. Good health
Stroke
ComputingMethodologies_DOCUMENTANDTEXTPROCESSING
purl.org/becyt/ford/3 [https]
Female
medicine.symptom
Cardiology and Cardiovascular Medicine
Signal Transduction
Blood Platelets
endocrine system
Integrin
Ischemia
Inflammation
Proinflammatory cytokine
03 medical and health sciences
Physiology (medical)
medicine
Animals
Humans
thrombosis
Aged
030304 developmental biology
business.industry
Thrombosis
medicine.disease
integrins
biology.protein
Cancer research
business
Reperfusion injury
030217 neurology & neurosurgery
Subjects
Details
- ISSN :
- 15244539 and 00097322
- Volume :
- 140
- Database :
- OpenAIRE
- Journal :
- Circulation
- Accession number :
- edsair.doi.dedup.....a9b9d0689bd55e61c7cea2c4af12e71f
- Full Text :
- https://doi.org/10.1161/circulationaha.118.039345