Back to Search Start Over

Sub-hour Unit Commitment MILP Model with Benchmark Problem Instances

Authors :
Bernard Fortz
Alexander C. Melhorn
Paula Carroll
Damian Flynn
University College Dublin [Dublin] (UCD)
Graphes et Optimisation Mathématique [Bruxelles] (GOM)
Université libre de Bruxelles (ULB)
Integrated Optimization with Complex Structure (INOCS)
Inria Lille - Nord Europe
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université libre de Bruxelles (ULB)-Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 (CRIStAL)
Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)
Université libre de Bruxelles (ULB)-Inria Lille - Nord Europe
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 (CRIStAL)
Source :
LNCS, ICCSA 2017-17th International Conference on Computational Science and Its Applications, ICCSA 2017-17th International Conference on Computational Science and Its Applications, Jul 2017, Trieste, Italy. pp.635-651, ⟨10.1007/978-3-319-62395-5_44⟩, Computational Science and Its Applications – ICCSA 2017 ISBN: 9783319623948, ICCSA (2)
Publication Year :
2017
Publisher :
HAL CCSD, 2017.

Abstract

International audience; Power systems are operated to deliver electricity at minimum cost while adhering to operational and technical constraints. The introduction of smart grid technologies and renewable energy sources offers new challenges and opportunities for the efficient and reliable management of the grid. In this paper we focus on a Mixed Integer Programming sub-hour Unit Commitment model. We present analysis of computational results from a large set of problem instances based on the Irish system and show that problem instances with higher variability in net demand (after the integration of renewables) are more challenging to solve

Details

Language :
English
ISBN :
978-3-319-62394-8
ISBNs :
9783319623948
Database :
OpenAIRE
Journal :
LNCS, ICCSA 2017-17th International Conference on Computational Science and Its Applications, ICCSA 2017-17th International Conference on Computational Science and Its Applications, Jul 2017, Trieste, Italy. pp.635-651, ⟨10.1007/978-3-319-62395-5_44⟩, Computational Science and Its Applications – ICCSA 2017 ISBN: 9783319623948, ICCSA (2)
Accession number :
edsair.doi.dedup.....aa3413630b4f121aa3daec6bc0565686