Back to Search Start Over

On fixed point index theory for the sum of operators and applications to a class of ODEs and PDEs

Authors :
Georgiev Georgiev, Svetlin
Mebarki, Karima
Source :
Applied General Topology, Vol 22, Iss 2, Pp 259-294 (2021), RiuNet. Repositorio Institucional de la Universitat Politécnica de Valéncia, instname
Publication Year :
2021
Publisher :
Universitat Politècnica de València, 2021.

Abstract

[EN] The aim of this work is two fold: first we extend some results concerning the computation of the fixed point index for the sum of an expansive mapping and a $k$-set contraction obtained in \cite{DjebaMeb, Svet-Meb}, to the case of the sum $T+F$, where $T$ is a mapping such that $(I-T)$ is Lipschitz invertible and $F$ is a $k$-set contraction. Secondly, as illustration of some our theoretical results, we study the existence of positive solutions for two classes of differential equations, covering a class of first-order ordinary differential equations (ODEs for short) posed on the positive half-line as well as a class of partial differential equations (PDEs for short).<br />Direction Générale de la Recherche Scientifique et du Développement Technologique DGRSDT. MESRS Algeria. Projet PRFU: C00L03UN060120180009

Details

Language :
English
ISSN :
19894147 and 15769402
Volume :
22
Issue :
2
Database :
OpenAIRE
Journal :
Applied General Topology
Accession number :
edsair.doi.dedup.....aa34c5d0c939e6eedc0894e59f3c6715