Back to Search Start Over

Low-cost sensor system for monitoring the oil mist concentration in a workshop

Authors :
Zhang Hongsheng
Wuxuan Pan
Siyi Zhang
Zhengwei Long
Source :
Environmental science and pollution research international. 28(12)
Publication Year :
2020

Abstract

Metalworking fluids used in industrial workshops may present a major threat to the health of workers who have been exposed to a high oil mist concentration over a long period of time. Therefore, monitoring the temporal and spatial distribution of particulate matter concentration has great practical significance for the control of oil mist. Traditional particle monitors are generally cumbersome, expensive, and difficult to maintain, which to some extent restricts their extensive use in workshops. Recent years have witnessed tremendous developments in the area of low-cost sensors, which are of great help in obtaining high-density pollution data. In this paper, we evaluate the performance of an inexpensive laser sensor (A4-CG) during long-term oil mist monitoring in a machine shop for the first time. With the use of Lora technology, we developed an online oil mist monitoring network to access real-time concentration, temperature, and humidity information from distributed monitors. According to the results, the sensor data correlated well with measurements by the reference instrument (R2 = 0.96), which means that the distributed sensor network can accurately detect the concentration level of oil mist in the workshop. In fact, most of the sensors demonstrated stable operation for up to half a year according to cluster analysis, while several sensors exhibited serious data drift. Furthermore, the results indicate that the peak oil mist concentration in most areas during production exceeded the value of 0.5 mg m-3 recommended by NIOSH, and it was found that appropriately lowering the relative humidity can make sampling more accurate, while lowering the temperature can reduce the oil mist concentration in the workshop. Thus, measures to control oil mist such as generation and distribution of pollution sources should be on the agenda.

Details

ISSN :
16147499
Volume :
28
Issue :
12
Database :
OpenAIRE
Journal :
Environmental science and pollution research international
Accession number :
edsair.doi.dedup.....aa487b518458b19433a27f16c74ed308