Back to Search Start Over

Exposure to traffic-related air pollution and risk of development of childhood asthma: A systematic review and meta-analysis

Authors :
Mark J. Nieuwenhuijsen
James Tate
Haneen Khreis
Charlotte Kelly
Roger C Parslow
Karen Lucas
Source :
Environment International, Vol 100, Iss, Pp 1-31 (2017), Khreis, H, Kelly, C, Tate, J, Parslow, R, Lucas, K & Nieuwenhuijsen, M 2017, ' Exposure to traffic-related air pollution and risk of development of childhood asthma : A systematic review and meta-analysis ', Environment International, vol. 100, pp. 1-31 . https://doi.org/10.1016/j.envint.2016.11.012
Publication Year :
2016

Abstract

Background and objective The question of whether children's exposure to traffic-related air pollution (TRAP) contributes to their development of asthma is unresolved. We conducted a systematic review and performed meta-analyses to analyze the association between TRAP and asthma development in childhood. Data sources We systematically reviewed epidemiological studies published until 8 September 2016 and available in the Embase, Ovid MEDLINE (R), and Transport databases. Study eligibility criteria, participants, and interventions We included studies that examined the association between children's exposure to TRAP metrics and their risk of ‘asthma’ incidence or lifetime prevalence, from birth to age 18 years old. Study appraisal and synthesis methods We extracted key characteristics of each included study using a predefined data items template and these were tabulated. We used the Critical Appraisal Skills Programme checklists to assess the validity of each included study. Where four or more independent risk estimates were available for a continuous pollutant exposure, we conducted overall and age-specific meta-analyses, and four sensitivity analyses for each summary meta-analytic exposure-outcome association. Results Forty-one studies met our eligibility criteria. There was notable variability in asthma definitions, TRAP exposure assessment methods and confounder adjustment. The overall random-effects risk estimates (95% CI) were 1.08 (1.03, 1.14) per 0.5 × 10− 5 m− 1black carbon (BC), 1.05 (1.02, 1.07) per 4 μg/m3nitrogen dioxide (NO2), 1.48 (0.89, 2.45) per 30 μg/m3nitrogen oxides (NOx), 1.03 (1.01, 1.05) per 1 μg/m3Particulate Matter 2.5), and 1.05 (1.02, 1.08) per 2 μg/m3Particulate Matter 10). Sensitivity analyses supported these findings. Across the main analysis and age-specific analysis, the least heterogeneity was seen for the BC estimates, some heterogeneity for the PM2.5and PM10estimates and the most heterogeneity for the NO2and NOxestimates. Limitations, conclusions and implication of key findings The overall risk estimates from the meta-analyses showed statistically significant associations for BC, NO2, PM2.5, PM10exposures and risk of asthma development. Our findings support the hypothesis that childhood exposure to TRAP contributes to their development of asthma. Future meta-analyses would benefit from greater standardization of study methods including exposure assessment harmonization, outcome harmonization, confounders' harmonization and the inclusion of all important confounders in individual studies. Systematic review registration number PROSPERO 2014: CRD42014015448.

Details

ISSN :
18736750
Volume :
100
Database :
OpenAIRE
Journal :
Environment international
Accession number :
edsair.doi.dedup.....aa7f68bbf825f7719cc4ec50d072e466
Full Text :
https://doi.org/10.1016/j.envint.2016.11.012