Back to Search Start Over

Automatic Stress Classification With Pupil Diameter Analysis

Authors :
Thierry Baccino
Mohammad Ali Mirzaei
Jean-Rémy Chardonnet
Frédéric Merienne
Adrien Tedesco
Simone Benedetto
Marco Pedrotti
Laboratoire des Usages en Technologies d'Information Numériques ( CHART-LUTIN )
Université Paris 8 Vincennes-Saint-Denis ( UP8 ) -Université de Technologie de Compiègne [Compiègne] ( UTC ) -CITE SCIENCES IND
Laboratoire Electronique, Informatique et Image ( Le2i )
Université de Bourgogne ( UB ) -AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement-Centre National de la Recherche Scientifique ( CNRS )
Scientific Brain Training
F1105041V (MASSAI)
Laboratoire des Usages en Technologies d'Information Numériques (LUTIN)
Université Paris 8 Vincennes-Saint-Denis (UP8)-Université de Technologie de Compiègne (UTC)-CITE SCIENCES IND-Université de Rennes 2 (UR2)
Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
Laboratoire Electronique, Informatique et Image [UMR6306] (Le2i)
Université de Bourgogne (UB)-École Nationale Supérieure d'Arts et Métiers (ENSAM)
Arts et Métiers Sciences et Technologies
HESAM Université (HESAM)-HESAM Université (HESAM)-Arts et Métiers Sciences et Technologies
HESAM Université (HESAM)-HESAM Université (HESAM)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement-Centre National de la Recherche Scientifique (CNRS)
Source :
International Journal of Human-Computer Interaction, International Journal of Human-Computer Interaction, Taylor & Francis, 2014, 30 (3), pp.220-236. 〈10.1080/10447318.2013.848320〉, International Journal of Human-Computer Interaction, Taylor & Francis, 2014, 30 (3), pp.220-236. ⟨10.1080/10447318.2013.848320⟩
Publication Year :
2014
Publisher :
Taylor & Francis, 2014.

Abstract

International audience; This article proposes a method based on wavelet transform and neural networks for relating pupillary behavior to psychological stress. The proposed method was tested by recording pupil diameter and electrodermal activity during a simulated driving task. Self-report measures were also collected. Participants performed a baseline run with the driving task only, followed by three stress runs where they were required to perform the driving task along with sound alerts, the presence of two human evaluators, and both. Self-reports and pupil diameter successfully indexed stress manipulation, and significant correlations were found between these measures. However, electrodermal activity did not vary accordingly. After training, the four-way parallel neural network classifier could guess whether a given unknown pupil diameter signal came from one of the four experimental trials with 79.2% precision. The present study shows that pupil diameter signal has good discriminating power for stress detection.

Details

Language :
English
ISSN :
10447318 and 15327590
Database :
OpenAIRE
Journal :
International Journal of Human-Computer Interaction, International Journal of Human-Computer Interaction, Taylor & Francis, 2014, 30 (3), pp.220-236. 〈10.1080/10447318.2013.848320〉, International Journal of Human-Computer Interaction, Taylor & Francis, 2014, 30 (3), pp.220-236. ⟨10.1080/10447318.2013.848320⟩
Accession number :
edsair.doi.dedup.....aa9f9a80fa3e111aa050fcc7eebaec85
Full Text :
https://doi.org/10.1080/10447318.2013.848320〉