Back to Search Start Over

Hypoxic Lung-Cancer-Derived Extracellular Vesicle MicroRNA-103a Increases the Oncogenic Effects of Macrophages by Targeting PTEN

Authors :
Shu-Fang Jian
Wei-An Chang
Cheng-Ying Wu
Yi-Chung Pan
Ya-Ling Hsu
Jen-Yu Hung
Yi-Shiuan Lin
Po-Lin Kuo
Source :
Molecular Therapy
Publication Year :
2018
Publisher :
Elsevier BV, 2018.

Abstract

Hypoxia, the most commonly observed characteristic in cancers, is implicated in the establishment of an immunosuppressive niche. Recent studies have indicated that extracellular vesicle (EV)-mediated cancer-stroma interactions are considered to play a critical role in the regulation of various cellular biological functions, with phenotypic consequences in recipient cells. However, the mechanisms underlying the relationship between EVs and hypoxia during cancer progression remain largely unknown. In this study, we found that EVs derived from hypoxic lung cancers increased M2-type polarization by miR-103a transfer. Decreased PTEN levels caused by hypoxic cancer-cell-derived EV miR-103a increased activation of AKT and STAT3 as well as expression of several immunosuppressive and pro-angiogeneic factors. In contrast, inhibition of miR-103a by an miRNA inhibitor effectively decreased hypoxic cancer-mediated M2-type polarization, improving the cytokine prolife of tumor infiltration macrophages. Macrophages received cancer-cell-derived EV miR-103a feedback to further enhance cancer progression and tumor angiogenesis. Finally, circulating EV miR-103a levels were higher in patients with lung cancer and closely associated with the M2 polarization. In conclusion, our results delineate a novel mechanism by which lung cancer cells induce immunosuppressive and pro-tumoral macrophages through EVs and inspire further research into the clinical application of EV inhibition or PTEN restoration for immunotherapy.<br />Graphical Abstract<br />Extracellular vesicle (EV) miR-103 can be transferred from hypoxic cancer cells to macrophages, resulting in the enhancement of M2 polarization by the downregulation of miR-103a’s direct target PTEN. EV miR-103a increases the stimulatory effects of macrophages on cancer progression and angiogenesis.

Details

ISSN :
15250016
Volume :
26
Database :
OpenAIRE
Journal :
Molecular Therapy
Accession number :
edsair.doi.dedup.....ab10013bce7e5139c6099170ec374317
Full Text :
https://doi.org/10.1016/j.ymthe.2017.11.016