Back to Search Start Over

Duality for non-convex variational problems

Authors :
Guy Bouchitté
Ilaria Fragalà
Institut de Mathématiques de Toulon - EA 2134 (IMATH)
Université de Toulon (UTLN)
Dipartimento di Matematica 'F. Brioschi'
Politecnico di Milano [Milan] (POLIMI)
Source :
Comptes Rendus. Mathématique, Comptes Rendus. Mathématique, Académie des sciences (Paris), 2015, 353 (4), pp.375--379. ⟨10.1016/j.crma.2015.01.014⟩
Publication Year :
2015
Publisher :
Elsevier BV, 2015.

Abstract

We consider classical problems of the calculus of variations of the kind (1) I ( Ω ) : = inf ⁡ { ∫ Ω f ( u , ∇ u ) d x + ∫ Γ 1 γ ( u ) d H N − 1 , u = u 0 on Γ 0 } where Ω is an open bounded subset of R N , ( Γ 0 , Γ 1 ) is a partition of ∂Ω, γ is a Lipschitz function, and f = f ( t , z ) is an l.s.c. function satisfying suitable growth conditions, which is convex in z , but possibly not in t . We present a new duality theory in which the dual problem reads quite nicely as a linear programming problem. The solvability of such a dual problem is a major issue. It can be achieved in the one-dimensional case, and in higher dimensions under special assumptions on f . Our results apply to phase transition and free-boundary problems.

Details

ISSN :
1631073X and 17783569
Volume :
353
Database :
OpenAIRE
Journal :
Comptes Rendus Mathematique
Accession number :
edsair.doi.dedup.....ab2cc161c6c1b5fa324273bc74ac905a
Full Text :
https://doi.org/10.1016/j.crma.2015.01.014