Back to Search Start Over

High-speed train suspension health monitoring using computational dynamics and acceleration measurements

Authors :
Christine Funfschilling
David Lebel
Christian Soize
Guillaume Perrin
SNCF : Innovation & Recherche
SNCF
Laboratoire de Modélisation et Simulation Multi Echelle (MSME)
Université Paris-Est Marne-la-Vallée (UPEM)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS)
SNCF - Direction de l'Innovation et de la Recherche
DAM Île-de-France (DAM/DIF)
Direction des Applications Militaires (DAM)
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)
Centre National de la Recherche Scientifique (CNRS)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Université Paris-Est Marne-la-Vallée (UPEM)
CEA DAM DIF
Source :
Vehicle System Dynamics, Vehicle System Dynamics, Taylor & Francis, 2019, pp.1-22. ⟨10.1080/00423114.2019.1601744⟩, Vehicle System Dynamics, Taylor & Francis, 2020, 58 (6), pp.911-932. ⟨10.1080/00423114.2019.1601744⟩, Vehicle System Dynamics, 2020, 58 (6), pp.911-932. ⟨10.1080/00423114.2019.1601744⟩
Publication Year :
2019
Publisher :
HAL CCSD, 2019.

Abstract

International audience; This paper presents a novel method for the state health monitoring of high-speed train suspensions from in-line acceleration measurements by embedded sensors, for maintenance purposes. We propose a model-based method relying on a multibody simulation code. It performs the simultaneous identification of several suspension mechanical parameters. It is adapted to the introduction of uncertainties in the system and to the exploitation of numerous high-dimensional measurements. The novel method consists in a Bayesian calibration approach using a Gaussian process surro-gate model of the likelihood function. The method has been validated on numerical experiments. We demonstrate its ability to detect evolutions of the health state of suspension elements. It has then been tested on actual acceleration measurements to study the time evolution of the suspension parameters.

Details

Language :
English
ISSN :
00423114 and 17445159
Database :
OpenAIRE
Journal :
Vehicle System Dynamics, Vehicle System Dynamics, Taylor & Francis, 2019, pp.1-22. ⟨10.1080/00423114.2019.1601744⟩, Vehicle System Dynamics, Taylor & Francis, 2020, 58 (6), pp.911-932. ⟨10.1080/00423114.2019.1601744⟩, Vehicle System Dynamics, 2020, 58 (6), pp.911-932. ⟨10.1080/00423114.2019.1601744⟩
Accession number :
edsair.doi.dedup.....ab3a66fc9dc14afc11b5bd97d458a119
Full Text :
https://doi.org/10.1080/00423114.2019.1601744⟩