Back to Search
Start Over
Chemical Analysis of Fluorobenzenes via Multinuclear Detection in the Strong Heteronuclear J-Coupling Regime
- Source :
- Applied Sciences, Vol 10, Iss 3836, p 3836 (2020), Applied Sciences, Volume 10, Issue 11
- Publication Year :
- 2020
- Publisher :
- MDPI AG, 2020.
-
Abstract
- Chemical analysis via nuclear magnetic resonance (NMR) spectroscopy using permanent magnets, rather than superconducting magnets, is a rapidly developing field. Performing the NMR measurement in the strong heteronuclear J-coupling regime has shown considerable promise for the chemical analysis of small molecules. Typically, the condition for the strong heteronuclear J-coupling regime is satisfied at &micro<br />T magnetic field strengths and enables high resolution J-coupled spectra (JCS) to be acquired. However, the JCS response to systematic chemical structural changes has largely not been investigated. In this report, we investigate the JCS of C6H6&minus<br />xFx (x = 0, 1, 2, &hellip<br />6) fluorobenzene compounds via simultaneous excitation and detection of 19F and 1H at 51.5 &micro<br />T. The results demonstrate that JCS are quantitative, and the common NMR observables, including Larmor frequency, heteronuclear and homonuclear J-couplings, relative signs of the J-coupling, chemical shift, and relaxation, are all measurable and are differentiable between molecules at low magnetic fields. The results, corroborated by ab initio calculations, provide new insights into the impact of chemical structure and their corresponding spin systems on JCS. In several instances, the JCS provided more chemical information than traditional high field NMR, demonstrating that JCS can be used for robust chemical analysis.
- Subjects :
- Pople notation
Materials science
low field NMR
strong-heteronuclear J-coupling regime
02 engineering and technology
010402 general chemistry
J-coupling
01 natural sciences
Molecular physics
lcsh:Technology
Homonuclear molecule
lcsh:Chemistry
Ab initio quantum chemistry methods
strong coupling
Molecule
General Materials Science
Instrumentation
lcsh:QH301-705.5
Fluid Flow and Transfer Processes
Larmor precession
lcsh:T
Process Chemistry and Technology
Relaxation (NMR)
fluorobenzene
General Engineering
021001 nanoscience & nanotechnology
lcsh:QC1-999
0104 chemical sciences
Computer Science Applications
J-coupled spectroscopy
Heteronuclear molecule
lcsh:Biology (General)
lcsh:QD1-999
lcsh:TA1-2040
0210 nano-technology
lcsh:Engineering (General). Civil engineering (General)
Excitation
lcsh:Physics
Subjects
Details
- Language :
- English
- ISSN :
- 20763417
- Volume :
- 10
- Issue :
- 3836
- Database :
- OpenAIRE
- Journal :
- Applied Sciences
- Accession number :
- edsair.doi.dedup.....ab76ccc22ade8832ff8ff5b6531b2475