Back to Search Start Over

Hybrid asynchronous absorbing layers based on Kosloff damping for seismic wave propagation in unbounded domains

Authors :
Michael Brun
Sergey V. Kuznetsov
Irini Djeran-Maigre
Sijia Li
Groupe de Recherche en Géomécanique (GRG)
Géomécanique, Matériaux et Structures (GEOMAS)
Institut National des Sciences Appliquées de Lyon (INSA Lyon)
Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées de Lyon (INSA Lyon)
Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)
Mécanique des Matériaux et des Structures (M2S)
institute for Problems in Mechanics [Moscow]
Russian Academy of Sciences [Moscow] (RAS)
Source :
Computers and Geotechnics, Computers and Geotechnics, Elsevier, 2019, 109, pp.69-81. ⟨10.1016/j.compgeo.2019.01.019⟩
Publication Year :
2019
Publisher :
HAL CCSD, 2019.

Abstract

International audience; This paper presents a novel approach for modeling infinite media, called Hybrid (different time integrators) Asynchronous (different time steps) Kosloff Absorbing Layers with Increasing Damping (HA-Kosloff ALID). By using strong forms of wave propagation in Kosloff media, its design equation is derived as well as optimal conditions between physical and absorbing domains. Explicit/Implicit co-simulation is adopted to reduce computation time. Examples of semi-infinite bar and Lamb’s test are implemented to illustrate the efficiency of our approach in terms of accuracy and CPU time, in comparison to Rayleigh ALID and PML. It turns out to be efficient and convenient for modeling unbounded domain.

Details

Language :
English
ISSN :
0266352X and 18737633
Database :
OpenAIRE
Journal :
Computers and Geotechnics, Computers and Geotechnics, Elsevier, 2019, 109, pp.69-81. ⟨10.1016/j.compgeo.2019.01.019⟩
Accession number :
edsair.doi.dedup.....abc2ea0b8c63ba34362a01490772812c
Full Text :
https://doi.org/10.1016/j.compgeo.2019.01.019⟩