Back to Search Start Over

Shapley Additive Explanations for Knowledge Discovery via Surrogate Models

Authors :
Palar, Pramudita Satria
Zuhal, Lavi Rizki
Dwianto, Yohanes Bimo
Shimoyama, Koji
Morlier, Joseph
Centre National de la Recherche Scientifique - CNRS (FRANCE)
Ecole nationale supérieure des Mines d'Albi-Carmaux - IMT Mines Albi (FRANCE)
Institut National des Sciences Appliquées de Toulouse - INSA (FRANCE)
Institut Supérieur de l'Aéronautique et de l'Espace - ISAE-SUPAERO (FRANCE)
Institut Teknologi Bandung - ITB (INDONESIA)
Université Toulouse III - Paul Sabatier - UT3 (FRANCE)
Tohoku University (JAPAN)
Institut Clément Ader - ICA (Toulouse, France)
Institut Teknologi Bandung (ITB)
Tohoku University [Sendai]
Institut Clément Ader (ICA)
Institut Supérieur de l'Aéronautique et de l'Espace (ISAE-SUPAERO)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse)
Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3)
Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-IMT École nationale supérieure des Mines d'Albi-Carmaux (IMT Mines Albi)
Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)
Source :
AIAA SCITECH 2023 Forum, AIAA SciTech Forumv, AIAA SciTech Forumv, Jan 2023, National Harbor, United States. pp.0, ⟨10.2514/6.2023-0332⟩
Publication Year :
2023

Abstract

International audience; It is sometimes desirable to delve further into how the inputs affect the output in design optimization and uncertainty analysis. Surrogate models such as Gaussian Process Regression and support vector regression are useful for such tasks and can be further enhanced by introducing advanced post-processing methods. This paper investigates Shapley Additive Explanation (SHAP) as a tool to aid surrogate-assisted data-driven analysis. In particular, surrogate-enabled SHAP analysis allows visualization of the input-output relationship in a meaningful way using summary SHAP plots and SHAP dependence plots. Some importantinformation that can be extracted and visualized from SHAP includes the importance of input variables (i.e., global sensitivity analysis), nonlinearity level, and level of interactions. The benefits of Shapley values for engineering analysis using surrogate models are demonstrated in three engineering test problems.

Details

Language :
English
Database :
OpenAIRE
Journal :
AIAA SCITECH 2023 Forum, AIAA SciTech Forumv, AIAA SciTech Forumv, Jan 2023, National Harbor, United States. pp.0, ⟨10.2514/6.2023-0332⟩
Accession number :
edsair.doi.dedup.....abf7fc76cb9a86bd14ac563a3b37fcde
Full Text :
https://doi.org/10.2514/6.2023-0332⟩