Back to Search Start Over

Protostellar collapse: radiative and magnetic feedbacks on small-scale fragmentation

Authors :
Romain Teyssier
Gilles Chabrier
Benoît Commerçon
Edouard Audit
Patrick Hennebelle
Max-Planck-Institut für Astronomie (MPIA)
Centre de Recherche Astrophysique de Lyon (CRAL)
École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL)
Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)
Laboratoire d'Etude du Rayonnement et de la Matière en Astrophysique (LERMA)
École normale supérieure - Paris (ENS-PSL)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris
Université Paris sciences et lettres (PSL)-Université de Cergy Pontoise (UCP)
Université Paris-Seine-Université Paris-Seine-Centre National de la Recherche Scientifique (CNRS)
University of Zurich
Commerçon, B
Source :
Astronomy and Astrophysics-A&A, Astronomy and Astrophysics-A&A, 2010, 510, pp.L3. ⟨10.1051/0004-6361/200913597⟩
Publication Year :
2010
Publisher :
HAL CCSD, 2010.

Abstract

It is established that both radiative transfer and magnetic field have a strong impact on the collapse and the fragmentation of prestellar dense cores, but no consistent calculation exists yet at such scales. We present original AMR calculations including magnetic field (in the ideal MHD limit) and radiative transfer, within the Flux Limited Diffusion approximation, of the collapse of a 1 solar mass dense core. We compare the results with calculations performed with a barotropic EOS. We show that radiative transfer has an important impact on the collapse and the fragmentation, through the cooling or heating of the gas, and is complementary of the magnetic field. A larger field yields a stronger magnetic braking, increasing the accretion rate and thus the effect of the radiative feedback. Even for a strongly magnetized core, where the dynamics of the collapse is dominated by the magnetic field, radiative transfer is crucial to determine the temperature and optical depth distributions, two potentially accessible observational diagnostics. A barotropic EOS cannot account for realistic fragmentation. The diffusivity of the numerical scheme, however, is found to strongly affect the output of the collapse, leading eventually to spurious fragmentation. Both radiative transfer and magnetic field must be included in numerical calculations of star formation to obtain realistic collapse configurations and observable signatures. Nevertheless, the numerical resolution and the robustness of the solver are of prime importance to obtain reliable results. When using an accurate solver, the fragmentation is found to always remain inhibited by the magnetic field, at least in the ideal MHD limit, even when radiative transfer is included.<br />Comment: 6 pages, 7 figures, accepted for publication in Astronomy and Astrophysics

Details

Language :
English
ISSN :
00046361
Database :
OpenAIRE
Journal :
Astronomy and Astrophysics-A&A, Astronomy and Astrophysics-A&A, 2010, 510, pp.L3. ⟨10.1051/0004-6361/200913597⟩
Accession number :
edsair.doi.dedup.....abf93456669e384815f1284e9c72d2ab
Full Text :
https://doi.org/10.1051/0004-6361/200913597⟩