Back to Search Start Over

Resonance energy transfer between the adenosine 5'-diphosphate site of glutamate dehydrogenase and a guanosine 5'-triphosphate site containing a tyrosine labeled with 5'-[p-(fluorosulfonyl)benzoyl]-1,N6-ethenoadenosine

Authors :
Marlene A. Jacobson
Roberta F. Colman
Source :
Biochemistry. 22:4247-4257
Publication Year :
1983
Publisher :
American Chemical Society (ACS), 1983.

Abstract

The fluorescent nucleotide analogue 5'-[p-(fluorosulfonyl)benzoyl]-1,N6-ethenoadenosine (5'-FSB epsilon A) reacts irreversibly with bovine liver glutamate dehydrogenase and modifies one of the natural inhibitory guanosine 5'-triphosphate (GTP) sites [Jacobson, M.A., & Colman, R.F. (1982) Biochemistry 21, 2177-2186]. Enzyme with 1.28 mol of 5'-(p-sulfonylbenzoyl)-1,N6-ethenoadenosine/mol of subunit incorporated and exhibiting maximum change in sensitivity to GTP inhibition is now shown by amino acid analysis to contain 0.95 mol of O-[(4-carboxyphenyl)sulfonyl]tyrosine (CBS-Tyr) and 0.33 mol of N epsilon-[(4-carboxyphenyl)sulfonyl]-lysine (CBS-Lys), quantitatively accounting for the total incorporation prior to acid hydrolysis. As a function of time of incubation with 5'-FSB epsilon A, the amount of CBS-Tyr formed was directly proportional to the change in GTP inhibition. In contrast, an initial formation of CBS-Lys was observed, followed by relatively little additional CBS-Lys although the percent change in GTP inhibition continued to increase. It was concluded that the tyrosine is an essential residue in the GTP binding site of glutamate dehydrogenase, while the lysine modified is not involved in the inhibitory action of GTP. The nucleotide analogue 2'(3')-O-(2,4,6-trinitrophenyl)adenosine 5'-diphosphate (TNP-ADP) was evaluated for its ability to occupy the adenosine 5'-diphosphate (ADP) activator site and to function as an energy acceptor conjointly with 5'-SB epsilon A covalently bound at the GTP site as the energy donor. TNP-ADP activates native enzyme 2-fold and competes kinetically with ADP. As determined by fluorometric titration, the maximum number of TNP-ADP binding sites on native enzyme was 0.5 mol/mol of subunit in the absence and 1 mol/mol of subunit in the presence of reduced coenzyme. The 5'-SB epsilon A-modified enzyme also binds TNP-ADP: 0.5 mol/mol of subunit in the absence or presence of reduced coenzyme. TNP-ADP competes for binding with ADP to native and 5'-SB epsilon A-modified enzyme, indicating that this nucleotide analogue is a satisfactory fluorescent probe of the ADP site of glutamate dehydrogenase. An energy-transfer efficiency of 0.77 was determined from the decrease in donor fluorescence upon addition of TNP-ADP in the absence of reduced coenzyme to modified enzyme containing 1.23 mol of 5'-SB epsilon A/mol of subunit. A value of 18 A was calculated as the average distance between the GTP and ADP regulatory sites. This result indicates that the inhibitory GTP and the activatory ADP sites are close but not identical.

Details

ISSN :
15204995 and 00062960
Volume :
22
Database :
OpenAIRE
Journal :
Biochemistry
Accession number :
edsair.doi.dedup.....ac30247e6120a7c32c651c97a0c13804
Full Text :
https://doi.org/10.1021/bi00287a014