Back to Search
Start Over
Affibody-Based PET Imaging to Guide EGFR-Targeted Cancer Therapy in Head and Neck Squamous Cell Cancer Models
- Source :
- Journal of Nuclear Medicine
- Publication Year :
- 2018
- Publisher :
- Society of Nuclear Medicine, 2018.
-
Abstract
- In head and neck squamous cell cancer, the human epidermal growth factor receptor 1 (EGFR) is the dominant signaling molecule among all members of the family. So far, cetuximab is the only approved anti-EGFR monoclonal antibody used for the treatment of head and neck squamous cell cancer, but despite the benefits of adding it to standard treatment regimens, attempts to define a predictive biomarker to stratify patients for cetuximab treatment have been unsuccessful. We hypothesized that imaging with EGFR-specific radioligands may facilitate noninvasive measurement of EGFR expression across the entire tumor burden and allow for dynamic monitoring of cetuximab-mediated changes in receptor expression. Methods: EGFR-specific Affibody molecule (ZEGFR:03115) was radiolabeled with 89Zr and 18F. The radioligands were characterized in vitro and in mice bearing subcutaneous tumors with varying levels of EGFR expression. The protein dose for imaging studies was assessed by injecting 89Zr-deferoxamine-ZEGFR:03115 (2.4–3.6 MBq, 2 μg) either together with or 30 min after increasing amounts of unlabeled ZEGFR:03115 (1, 5, 10, 15, and 20 μg). PET images were acquired at 3, 24, and 48 h after injection, and the image quantification data were correlated with the biodistribution results. The EGFR expression and biodistribution of the tracer were assessed ex vivo by immunohistochemistry, Western blot, and autoradiography. To downregulate the EGFR level, treatment with cetuximab was performed, and 18F-aluminium fluoride-NOTA-ZEGFR:03115 (12 μg, 1.5–2 MBq/mouse) was used to monitor receptor changes. Results: In vivo studies demonstrated that coinjecting 10 μg of nonlabeled molecules with 89Zr-deferoxamine-ZEGFR:03115 allows for clear tumor visualization 3 h after injection. The radioconjugate tumor accumulation was EGFR-specific, and PET imaging data showed a clear differentiation between xenografts with varying EGFR expression levels. A strong correlation was observed between PET analysis, ex vivo estimates of tracer concentration, and receptor expression in tumor tissues. Additionally, 18F-aluminium fluoride-NOTA-ZEGFR:03115 could measure receptor downregulation in response to EGFR inhibition. Conclusion: ZEGFR:03115-based radioconjugates can assess different levels of EGFR level in vivo and measure receptor expression changes in response to cetuximab, indicating a potential for assessment of adequate treatment dosing with anti-EGFR antibodies.
- Subjects :
- 0301 basic medicine
Biodistribution
EGFR
Receptor expression
Cetuximab
Down-Regulation
89Zr
cancer imaging
Clinical
Mice
03 medical and health sciences
0302 clinical medicine
In vivo
Cell Line, Tumor
Animals
Humans
Medicine
Tissue Distribution
Radiology, Nuclear Medicine and imaging
Molecular Targeted Therapy
Basic
Receptor
Affibody molecules
Radioisotopes
Squamous Cell Carcinoma of Head and Neck
business.industry
3. Good health
ErbB Receptors
18F
030104 developmental biology
030220 oncology & carcinogenesis
Cancer research
Immunohistochemistry
Affibody molecule
Zirconium
business
Ex vivo
medicine.drug
Subjects
Details
- ISSN :
- 2159662X and 01615505
- Volume :
- 60
- Database :
- OpenAIRE
- Journal :
- Journal of Nuclear Medicine
- Accession number :
- edsair.doi.dedup.....ac636b7224c59e4fa38aff178a3a19ad
- Full Text :
- https://doi.org/10.2967/jnumed.118.216069