Back to Search Start Over

The effect of diethylene glycol monoethyl ether on skin penetration ability of diclofenac acid nanosuspensions

Authors :
Francesca Marongiu
Donatella Valenti
Chiara Sinico
Guido Ennas
Sergio Murgia
Rosa Pireddu
Michele Schlich
Francesco Lai
Anna Maria Fadda
Source :
Colloids and surfaces. B, Biointerfaces. 162
Publication Year :
2017

Abstract

The poor ability of many drugs to cross skin layers is the main limiting factor for the exploitation of the transdermal route for drug delivery. As a consequence, several approaches have been proposed to overcome the skin barrier, such as the inclusion of penetration enhancers in the topically applied drug solutions and emulsions. In this work, the penetration enhancer diethylene glycol monoethyl ether was included in novel diclofenac acid nanocrystal formulations, developed using the wet media milling technique and Poloxamer 188 as stabilizer. The nanosuspensions were characterized by different techniques such as scanning electron microscopy, differential scanning calorimetry, X-ray powder diffractometry, Fourier-transform infrared spectroscopy and photon correlation spectroscopy. The influence of diethylene glycol monoethyl ether on (trans)dermal delivery of diclofenac nanosuspensions was evaluated by in vitro studies using Franz diffusion cells and pig skin. Results demonstrated that the presence of diethylene glycol monoethyl ether influences the Poloxamer 188 ability to stabilize the nanocrystals during the milling process, leading to larger particles as compared to penetration enhancer-free nanosuspensions. As previously reported, the in vitro permeation studies indicate the nanosizing as a key factor in the dermal penetration of topically applied diclofenac. Surprisingly enough, the inclusion of increasing amounts of the penetration enhancer in the formulation decreased the diclofenac accumulation in the stratum corneum, while showing no significant effect on the drug delivered to the epidermis. Overall, the present results exclude a synergistic effect of the nanosizing approach and the addition of diethylene glycol monoethyl ether in regard to the skin penetration of diclofenac applied as a nanosuspension.

Details

ISSN :
18734367
Volume :
162
Database :
OpenAIRE
Journal :
Colloids and surfaces. B, Biointerfaces
Accession number :
edsair.doi.dedup.....ac796c86d74c0e28033c3806ea1d1086