Back to Search Start Over

The missing link in gravitational-wave astronomy: discoveries waiting in the decihertz range

Authors :
K. E. Saavik Ford
Christopher P. L. Berry
Daniela D. Doneva
Niels Warburton
Tessa Baker
Kaze Wong
Jose María Ezquiaga
Guido Mueller
Michael L. Katz
Karan Jani
Surjeet Rajendran
Katelyn Breivik
Barry McKernan
Pau Amaro-Seoane
Nicola Tamanini
Adam Burrows
Shimon Kolkowitz
Germano Nardini
Chiara Caprini
Michael Zevin
Igor Pikovski
Pierre Auclair
Manuel Arca Sedda
Alberto Sesana
David Vartanyan
Helvi Witek
Xian Chen
Lijing Shao
J. Baird
Emanuele Berti
Institut d'Astrophysique de Paris (IAP)
Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
Max Planck Institute for Gravitational Physics (Albert Einstein Institute) (AEI)
Max-Planck-Gesellschaft
AstroParticule et Cosmologie (APC (UMR_7164))
Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris
PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)
Department of Physics and Astronomy [U Mississippi]
The University of Mississippi [Oxford]
Affymetrix Inc.
Harvard-Smithsonian Center for Astrophysics (CfA)
Smithsonian Institution-Harvard University [Cambridge]
Max-Planck-Institut für Gravitationsphysik ( Albert-Einstein-Institut ) (AEI)
Institut de Physique Théorique - UMR CNRS 3681 (IPHT)
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
Observatoire de Paris
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)
Harvard University-Smithsonian Institution
Source :
Classical and Quantum Gravity, Classical and Quantum Gravity, 2020, Classical and Quantum Gravity, 37 (21), ⟨10.1088/1361-6382/abb5c1⟩
Publication Year :
2020

Abstract

The gravitational-wave astronomical revolution began in 2015 with LIGO's observation of the coalescence of two stellar-mass black holes. Over the coming decades, ground-based detectors like LIGO will extend their reach, discovering thousands of stellar-mass binaries. In the 2030s, the space-based LISA will enable gravitational-wave observations of the massive black holes in galactic centres. Between LISA and ground-based observatories lies the unexplored decihertz gravitational-wave frequency band. Here, we propose a Decihertz Observatory to cover this band, and complement observations made by other gravitational-wave observatories. The decihertz band is uniquely suited to observation of intermediate-mass ($\sim 10^2$-$10^4 M_\odot$) black holes, which may form the missing link between stellar-mass and massive black holes, offering a unique opportunity to measure their properties. Decihertz observations will be able to detect stellar-mass binaries days to years before they merge and are observed by ground-based detectors, providing early warning of nearby binary neutron star mergers, and enabling measurements of the eccentricity of binary black holes, providing revealing insights into their formation. Observing decihertz gravitational-waves also opens the possibility of testing fundamental physics in a new laboratory, permitting unique tests of general relativity and the Standard Model of particle physics. Overall, a Decihertz Observatory will answer key questions about how black holes form and evolve across cosmic time, open new avenues for multimessenger astronomy, and advance our understanding of gravitation, particle physics and cosmology.<br />52 pages, 5 figures, 4 tables. Submitted to Classical & Quantum Gravity. Based upon a white paper for ESA's Voyage 2050 on behalf of the LISA Consortium 2050 Task Force

Details

ISSN :
02649381, 00344885, 20418205, 00027537, 17426596, 0004637X, 15384357, 14757516, 03054470, 16741137, and 13616382
Database :
OpenAIRE
Journal :
Classical and Quantum Gravity
Accession number :
edsair.doi.dedup.....ac953b668cb33f95ee547aacbbfed478
Full Text :
https://doi.org/10.1088/1361-6382/abb5c1