Back to Search
Start Over
Correlative SMLM and electron tomography reveals endosome nanoscale domains
- Publication Year :
- 2019
- Publisher :
- Cold Spring Harbor Laboratory, 2019.
-
Abstract
- Many cellular organelles, including endosomes, show compartmentalization into distinct functional domains, which however cannot be resolved by diffraction-limited light microscopy. Single molecule localization microscopy (SMLM) offers nanoscale resolution but data interpretation is often inconclusive when the ultrastructural context is missing. Correlative light electron microscopy (CLEM) combining SMLM with electron microscopy (EM) enables correlation of functional sub-domains of organelles in relation to their underlying ultrastructure at nanometer resolution. However, the specific demands for EM sample preparation and the requirements for fluorescent single-molecule photo-switching are opposed. Here, we developed a novel superCLEM workflow that combines triple-colour SMLM (dSTORM & PALM) and electron tomography using semi-thin Tokuyasu thawed cryosections. We applied the superCLEM approach to directly visualize nanoscale compartmentalization of endosomes in HeLa cells. Internalized, fluorescently labelled Transferrin and EGF were resolved into morphologically distinct domains within the same endosome. We found that the small GTPase Rab5 is organized in nano-domains on the globular part of early endosomes. The simultaneous visualization of several proteins in functionally distinct endosomal sub-compartments demonstrates the potential of superCLEM to link the ultrastructure of organelles with their molecular organization at nanoscale resolution.SynopsisSuborganelle compartmentalization cannot be resolved by diffraction limited light microscopy and not interpreted without knowledge of the underlying ultrastructure. This work shows a novel superCLEM workflow that combines multi-colour single-molecule localization-microscopy with electron tomography to map several functional domains on early endosomes. superCLEM reveals that the small GTPase Rab5 is organized in nano-domains largely devoid from cargo molecules Transferrin and EGF and opens new possibilities to perform structure-function analysis of organelles at the nanoscale.
- Subjects :
- 0303 health sciences
Endosome
Chemistry
Compartmentalization (fire protection)
law.invention
03 medical and health sciences
0302 clinical medicine
Electron tomography
law
Microscopy
Organelle
Ultrastructure
Biophysics
Small GTPase
Electron microscope
030217 neurology & neurosurgery
030304 developmental biology
Subjects
Details
- Database :
- OpenAIRE
- Accession number :
- edsair.doi.dedup.....accf9737d83bac06aee94b202ebee403
- Full Text :
- https://doi.org/10.1101/629147