Back to Search
Start Over
Tissue-specific splicing of an Ndufs6 gene-trap insertion generates a mitochondrial complex I deficiency-specific cardiomyopathy
- Source :
- Proceedings of the National Academy of Sciences of the United States of America. 109(16)
- Publication Year :
- 2012
-
Abstract
- Mitochondrial complex I (CI) deficiency is the most common mitochondrial enzyme defect in humans. Treatment of mitochondrial disorders is currently inadequate, emphasizing the need for experimental models. In humans, mutations in the NDUFS6 gene, encoding a CI subunit, cause severe CI deficiency and neonatal death. In this study, we generated a CI-deficient mouse model by knockdown of the Ndufs6 gene using a gene-trap embryonic stem cell line. Ndufs6 gt/gt mice have essentially complete knockout of the Ndufs6 subunit in heart, resulting in marked CI deficiency. Small amounts of wild-type Ndufs6 mRNA are present in other tissues, apparently due to tissue-specific mRNA splicing, resulting in milder CI defects. Ndufs6 gt/gt mice are born healthy, attain normal weight and maturity, and are fertile. However, after 4 mo in males and 8 mo in females, Ndufs6 gt/gt mice are at increased risk of cardiac failure and death. Before overt heart failure, Ndufs6 gt/gt hearts show decreased ATP synthesis, accumulation of hydroxyacylcarnitine, but not reactive oxygen species (ROS). Ndufs6 gt/gt mice develop biventricular enlargement by 1 mo, most pronounced in males, with scattered fibrosis and abnormal mitochondrial but normal myofibrillar ultrastructure. Ndufs6 gt/gt isolated working heart preparations show markedly reduced left ventricular systolic function, cardiac output, and functional work capacity. This reduced energetic and functional capacity is consistent with a known susceptibility of individuals with mitochondrial cardiomyopathy to metabolic crises precipitated by stresses. This model of CI deficiency will facilitate studies of pathogenesis, modifier genes, and testing of therapeutic approaches.
- Subjects :
- Male
medicine.medical_specialty
Mice, 129 Strain
Mitochondrial Diseases
Mitochondrial disease
RNA Splicing
Blotting, Western
Cardiomyopathy
Kaplan-Meier Estimate
Mitochondrion
Biology
In Vitro Techniques
Cell Line
Mice
Adenosine Triphosphate
Fibrosis
Internal medicine
Carnitine
medicine
Animals
Humans
Mice, Knockout
Gene knockdown
NDUFS6
Multidisciplinary
Electron Transport Complex I
Reverse Transcriptase Polymerase Chain Reaction
Gene Expression Profiling
Myocardium
Heart
NADH Dehydrogenase
Biological Sciences
medicine.disease
Molecular biology
Mitochondria
Mice, Inbred C57BL
Microscopy, Electron
Mutagenesis, Insertional
Endocrinology
Animals, Newborn
Heart failure
Female
Cardiomyopathies
medicine.drug
Subjects
Details
- ISSN :
- 10916490
- Volume :
- 109
- Issue :
- 16
- Database :
- OpenAIRE
- Journal :
- Proceedings of the National Academy of Sciences of the United States of America
- Accession number :
- edsair.doi.dedup.....ace775feb323e527ead540aa3d5fc369