Back to Search Start Over

Dipyrrolyl precursors to bisalkoxide molybdenum olefin metathesis catalysts

Authors :
Amir H. Hoveyda
Adam S. Hock
Richard R. Schrock
Source :
Journal of the American Chemical Society. 128(50)
Publication Year :
2006

Abstract

Addition of two equivalents of lithium pyrrolide to Mo(NR)(CHCMe2R')(OTf)2(DME) (OTf = OSO2CF3; R = 2,6-i-Pr2C6H3, 1-adamantyl, or 2,6-Br2-4-MeC6H2; R' = Me or Ph) produces Mo(NR)(CHCMe2R')(NC4H4)2 complexes in good yield. All compounds can be recrystallized readily from toluene or mixtures of pentane and ether and are sensitive to air and moisture. An X-ray structure of a 2,6-diisopropylphenylimido species shows it to be an unsymmetric dimer, {Mo(NAr)(syn-CHCMe2Ph)(η5-NC4H4)(η1-NC4H4)}{Mo(NAr)(syn-CHCMe2Ph)(η1-NC4H4)2}, in which the nitrogen in the η5-pyrrolyl bound to one Mo behaves as a donor to the other Mo. All complexes are fluxional on the NMR time scale at room temperature, with one symmetric species being observed on the NMR time scale at 50 °C in toluene-d8. The dimers react with PMe3 (at Mo) or B(C6F5)3 (at a η5-NC4H4 nitrogen) to give monomeric products in high yield. They also react rapidly with two equivalents of monoalcohols (e.g., Me3COH or (CF3)2MeCOH) or one equivalent of a biphenol or binaphthol to give two equivalents of pyrrole and bisalkoxide or diolate complexes in ~100% yield.

Details

ISSN :
00027863
Volume :
128
Issue :
50
Database :
OpenAIRE
Journal :
Journal of the American Chemical Society
Accession number :
edsair.doi.dedup.....acfc21d63abeca9910b001a55c7f2081