Back to Search Start Over

An Artificial Neural Network for Inferring Solar Wind Proxies at Mars

Authors :
David Brain
Edward Thiemann
David L. Mitchell
Bruce M. Jakosky
Jasper Halekas
Yaxue Dong
Francis G. Eparvier
Jared Espley
Christian Mazelle
Yuki Harada
Suranga Ruhunusiri
Gina A. DiBraccio
Y. J. Ma
Institut de recherche en astrophysique et planétologie (IRAP)
Université Toulouse III - Paul Sabatier (UT3)
Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP)
Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3)
Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS)
Source :
Geophysical Research Letters, Geophysical Research Letters, 2018, 45, pp.10,855-10,865. ⟨10.1029/2018GL079282⟩
Publication Year :
2018
Publisher :
HAL CCSD, 2018.

Abstract

International audience; We present a novel method to determine solar wind proxies from sheath measurements at Mars. Specifically, we develop an artificial neural network (ANN) to simultaneously infer seven solar wind proxies: ion density, ion speed, ion temperature, and interplanetary magnetic field magnitude and its vector components, using spacecraft measurements of ion moments, magnetic field magnitude, magnetic field components in the sheath, and the solar extreme ultraviolet flux. The ANN was trained and tested using 3 years of data from the Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft. When compared with MAVEN spacecraft's in situ measured values of the solar wind parameters, we find that the ANN proxies for the solar wind ion density, ion speed, ion temperature, and interplanetary magnetic field magnitude have percentage differences of 50% or less for 84.4%, 99.9%, 86.8%, and 79.8% of the instances, respectively. For the cone angle and clock angle proxies, 69.1% and 53.3% of instances, respectively, have angle differences of 30∘ or less.

Details

Language :
English
ISSN :
00948276 and 19448007
Database :
OpenAIRE
Journal :
Geophysical Research Letters, Geophysical Research Letters, 2018, 45, pp.10,855-10,865. ⟨10.1029/2018GL079282⟩
Accession number :
edsair.doi.dedup.....ad1951c3454f12d2b1793eca406dc291
Full Text :
https://doi.org/10.1029/2018GL079282⟩