Back to Search Start Over

Non-local electrical spin injection and detection in germanium at room temperature

Authors :
Céline Vergnaud
Alain Marty
Michele Celebrano
Carlo Zucchetti
Jean-Philippe Attané
Julie Widiez
Henri Jaffrès
Matthieu Jamet
Alberto Ferrari
F. Rortais
Federico Bottegoni
Giovanni Isella
Franco Ciccacci
Jean-Marie George
Marco Finazzi
Lavinia Ghirardini
SPINtronique et TEchnologie des Composants (SPINTEC)
Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG)
Direction de Recherche Fondamentale (CEA) (DRF (CEA))
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA))
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)
Commissariat à l'énergie atomique et aux énergies alternatives - Laboratoire d'Electronique et de Technologie de l'Information (CEA-LETI)
Direction de Recherche Technologique (CEA) (DRT (CEA))
Politecnico di Milano [Milan] (POLIMI)
Unité mixte de physique CNRS/Thales (UMPhy CNRS/THALES)
THALES-Centre National de la Recherche Scientifique (CNRS)
ANR-13-BS10-0002,SiGeSPIN,Spintronique dans le silicium et le germanium(2013)
THALES [France]-Centre National de la Recherche Scientifique (CNRS)
Source :
Applied Physics Letters, Applied Physics Letters, American Institute of Physics, 2017, 111 (18), pp.182401. ⟨10.1063/1.5003244⟩, Applied Physics Letters, 2017, 111 (18), pp.182401. ⟨10.1063/1.5003244⟩
Publication Year :
2017
Publisher :
HAL CCSD, 2017.

Abstract

Non-local carrier injection/detection schemes lie at the very foundation of information manipulation in integrated systems. This paradigm consists in controlling with an external signal the channel where charge carriers flow between a "source" and a well separated "drain". The next generation electronics may operate on the spin of carriers instead of their charge and germanium appears as the best hosting material to develop such a platform for its compatibility with mainstream silicon technology and the long electron spin lifetime at room temperature. Moreover, the energy proximity between the direct and indirect bandgaps allows for optical spin injection and detection within the telecommunication window. In this letter, we demonstrate injection of pure spin currents (\textit{i.e.} with no associated transport of electric charges) in germanium, combined with non-local spin detection blocks at room temperature. Spin injection is performed either electrically through a magnetic tunnel junction (MTJ) or optically, exploiting the ability of lithographed nanostructures to manipulate the distribution of circularly-polarized light in the semiconductor. Pure spin current detection is achieved using either a MTJ or the inverse spin-Hall effect (ISHE) across a platinum stripe. These results broaden the palette of tools available for the realization of opto-spintronic devices.<br />Comment: 14 pages and 5 figures

Details

Language :
English
ISSN :
00036951
Database :
OpenAIRE
Journal :
Applied Physics Letters, Applied Physics Letters, American Institute of Physics, 2017, 111 (18), pp.182401. ⟨10.1063/1.5003244⟩, Applied Physics Letters, 2017, 111 (18), pp.182401. ⟨10.1063/1.5003244⟩
Accession number :
edsair.doi.dedup.....ad69367057dc18085c9c9f1fe77768d5