Back to Search
Start Over
Hyperpolarized Helium 3 MRI in Mild-to-Moderate Asthma: Prediction of Postbronchodilator Reversibility
- Source :
- Medical Biophysics Publications
- Publication Year :
- 2019
- Publisher :
- Scholarship@Western, 2019.
-
Abstract
- Background: Longitudinal progression to irreversible airflow limitation occurs in approximately 10% of patients with asthma, but it is difficult to identify patients who are at risk for this transition. Purpose: To investigate 6-year longitudinal changes in hyperpolarized helium 3 (3He) MRI ventilation defects in study participants with mild-to-moderate asthma and identify predictors of longitudinal changes in postbronchodilator forced expiratory volume in 1 second (FEV1) reversibility Materials and Methods: Spirometry and hyperpolarized 3He MRI were evaluated in participants with mild-to-moderate asthma in two prospectively planned visits approximately 6 years apart. Participants underwent methacholine challenge at baseline (January 2010 to April 2011) and pre- and postbronchodilator evaluations at follow-up (November 2016 to June 2017). FEV1 and MRI ventilation defects, quantified as ventilation defect volume (VDV), were compared between visits by using paired t tests. Participants were dichotomized by postbronchodilator change in FEV1 at follow-up, and differences between reversible and not-reversible groups were determined by using unpaired t tests. Multivariable models were generated to explain postbronchodilator FEV1 reversibility at follow-up. Results: Eleven participants with asthma (mean age, 42 years ± 9 [standard deviation]; seven men) were evaluated at baseline and after mean 78 months ± 7. Medications, exacerbations, FEV1 (76% predicted vs 76% predicted; P = .91), and VDV (240 mL vs 250 mL; P = .92) were not different between visits. In eight of 11 participants (73%), MRI ventilation defects at baseline were at the same location in the lung at follow-up MRI. In the remaining three participants (27%), MRI ventilation defects worsened at the same lung locations as depicted at baseline methacholine-induced ventilation. At follow-up, postbronchodilator FEV1 was not reversible in six of 11 participants; the concentration of methacholine to decrease FEV1 by 20% (PC20) was greater in FEV1-irreversible participants at follow-up (P = .01). In a multivariable model, baseline MRI VDV helped to predict postbronchodilator reversibility at follow-up (R 2 = 0.80; P < .01), but PC20, age, and FEV1 did not (R 2 = 0.63; P = .15). Conclusion: MRI-derived, spatially persistent ventilation defects predict postbronchodilator reversibility 78 months ± 7 later for participants with mild-to-moderate asthma in whom there were no changes in lung function, medication, or exacerbations.
- Subjects :
- Adult
Male
medicine.medical_specialty
Moderate asthma
Bronchial provocation tests
Hyperpolarized Helium 3
Helium
Bronchial Provocation Tests
030218 nuclear medicine & medical imaging
03 medical and health sciences
0302 clinical medicine
Isotopes
Predictive Value of Tests
Internal medicine
medicine
Humans
Radiology, Nuclear Medicine and imaging
Longitudinal Studies
Lung
Asthma
medicine.diagnostic_test
business.industry
Follow up studies
Magnetic resonance imaging
respiratory system
Middle Aged
medicine.disease
Magnetic Resonance Imaging
respiratory tract diseases
Bronchodilator Agents
030220 oncology & carcinogenesis
Cardiology
Breathing
Medical Biophysics
Female
business
Follow-Up Studies
Subjects
Details
- Database :
- OpenAIRE
- Journal :
- Medical Biophysics Publications
- Accession number :
- edsair.doi.dedup.....adaa3e706659092ee94d56896b779fe0