Back to Search Start Over

Drug-biopolymer dispersions: morphology-and temperature-dependent (anti)plasticizer effect of the drug and component-specific Johari–Goldstein relaxations

Authors :
Sofia Valenti
Luis Javier del Valle
Michela Romanini
Meritxell Mitjana
Jordi Puiggalí
Josep Lluís Tamarit
Roberto Macovez
Universitat Politècnica de Catalunya. Departament de Física
Universitat Politècnica de Catalunya. Departament d'Enginyeria Química
Universitat Politècnica de Catalunya. PSEP - Polimers Sintètics: Estructura i Propietats. Polimers Biodegradables
Universitat Politècnica de Catalunya. GCM - Grup de Caracterització de Materials
Source :
UPCommons. Portal del coneixement obert de la UPC, Universitat Politècnica de Catalunya (UPC), Dipòsit Digital de la UB, Universidad de Barcelona, International Journal of Molecular Sciences; Volume 23; Issue 5; Pages: 2456
Publication Year :
2022

Abstract

Amorphous molecule-macromolecule mixtures are ubiquitous in polymer technology and are one of the most studied routes for the development of amorphous drug formulations. For these applications it is crucial to understand how the preparation method affects the properties of the mixtures. Here, we employ differential scanning calorimetry and broadband dielectric spectroscopy to investigate dispersions of a small-molecule drug (the Nordazepam anxiolytic) in biodegradable polylactide, both in the form of solvent-cast films and electrospun microfibres. We show that the dispersion of the same small-molecule compound can have opposite (plasticizing or antiplasticizing) effects on the segmental mobility of a biopolymer depending on preparation method, temperature, and polymer enantiomerism. We compare two different chiral forms of the polymer, namely, the enantiomeric pure, semicrystalline L-polymer (PLLA), and a random, fully amorphous copolymer containing both L and D monomers (PDLLA), both of which have lower glass transition temperature (Tg) than the drug. While the drug has a weak antiplasticizing effect on the films, consistent with its higher Tg, we find that it actually acts as a plasticizer for the PLLA microfibres, reducing their Tg by as much as 14 K at 30%-weight drug loading, namely, to a value that is lower than the Tg of fully amorphous films. The structural relaxation time of the samples similarly depends on chemical composition and morphology. Most mixtures displayed a single structural relaxation, as expected for homogeneous samples. In the PLLA microfibres, the presence of crystalline domains increases the structural relaxation time of the amorphous fraction, while the presence of the drug lowers the structural relaxation time of the (partially stretched) chains in the microfibres, increasing chain mobility well above that of the fully amorphous polymer matrix. Even fully amorphous homogeneous mixtures exhibit two distinct Johari–Goldstein relaxation processes, one for each chemical component. Our findings have important implications for the interpretation of the Johari–Goldstein process as well as for the physical stability and mechanical properties of microfibres with small-molecule additives.

Details

Language :
English
Database :
OpenAIRE
Journal :
UPCommons. Portal del coneixement obert de la UPC, Universitat Politècnica de Catalunya (UPC), Dipòsit Digital de la UB, Universidad de Barcelona, International Journal of Molecular Sciences; Volume 23; Issue 5; Pages: 2456
Accession number :
edsair.doi.dedup.....adbd4661294f53e0397cd836af5c002f