Back to Search Start Over

Controlling Wasserstein Distances by Kernel Norms with Application to Compressive Statistical Learning

Authors :
Vayer, Titouan
Gribonval, Rémi
Optimisation, Connaissances pHysiques, Algorithmes et Modèles (OCKHAM)
Laboratoire de l'Informatique du Parallélisme (LIP)
École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL)
Université de Lyon-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL)
Université de Lyon-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Institut Rhône-Alpin des systèmes complexes (IXXI)
École normale supérieure de Lyon (ENS de Lyon)-Université Lumière - Lyon 2 (UL2)-Université Jean Moulin - Lyon 3 (UJML)
Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL)
Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon)
Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Université Lumière - Lyon 2 (UL2)-Université Jean Moulin - Lyon 3 (UJML)
Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Inria Lyon
Institut National de Recherche en Informatique et en Automatique (Inria)
ANR-19-CHIA-0009,AllegroAssai,Algorithmes, Approximations, Parcimonie et Plongements pour l'IA(2019)
ANR-16-IDEX-0005,IDEXLYON,IDEXLYON(2016)
Dynamic Networks : Temporal and Structural Capture Approach (DANTE)
Inria Grenoble - Rhône-Alpes
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire de l'Informatique du Parallélisme (LIP)
École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL)
Université de Lyon-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL)
Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Institut Rhône-Alpin des systèmes complexes (IXXI)
Université Grenoble Alpes (UGA)-Institut National des Sciences Appliquées de Lyon (INSA Lyon)
Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université Lumière - Lyon 2 (UL2)-Université Jean Moulin - Lyon 3 (UJML)
Université de Lyon-Université Claude Bernard Lyon 1 (UCBL)
Université de Lyon-École normale supérieure - Lyon (ENS Lyon)-Université Grenoble Alpes (UGA)-Institut National des Sciences Appliquées de Lyon (INSA Lyon)
Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université Lumière - Lyon 2 (UL2)-Université Jean Moulin - Lyon 3 (UJML)
Université de Lyon
Réseaux dynamiques : approche structurelle et temporelle (DANTE)
Centre National de la Recherche Scientifique (CNRS)-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-Université Claude Bernard Lyon 1 (UCBL)
Université de Lyon-École normale supérieure - Lyon (ENS Lyon)-Centre National de la Recherche Scientifique (CNRS)-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL)
Université de Lyon-École normale supérieure - Lyon (ENS Lyon)-Institut Rhône-Alpin des systèmes complexes (IXXI)
Source :
Journal of Machine Learning Research, Journal of Machine Learning Research, 2023, 24 (149), pp.1--51
Publication Year :
2023
Publisher :
HAL CCSD, 2023.

Abstract

International audience; Comparing probability distributions is at the crux of many machine learning algorithms. Maximum Mean Discrepancies (MMD) and Wasserstein distances are two classes of distances between probability distributions that have attracted abundant attention in past years. This paper establishes some conditions under which the Wasserstein distance can be controlled by MMD norms. Our work is motivated by the compressive statistical learning (CSL) theory, a general framework for resource-efficient large scale learning in which the training data is summarized in a single vector (called sketch) that captures the information relevant to the considered learning task. Inspired by existing results in CSL, we introduce the Hölder Lower Restricted Isometric Property and show that this property comes with interesting guarantees for compressive statistical learning. Based on the relations between the MMD and the Wasserstein distances, we provide guarantees for compressive statistical learning by introducing and studying the concept of Wasserstein regularity of the learning task, that is when some task-specific metric between probability distributions can be bounded by a Wasserstein distance.

Details

Language :
English
ISSN :
15324435 and 15337928
Database :
OpenAIRE
Journal :
Journal of Machine Learning Research, Journal of Machine Learning Research, 2023, 24 (149), pp.1--51
Accession number :
edsair.doi.dedup.....ae125c391c2b0f908580a1cbe699852e