Back to Search Start Over

An efficient numerical model for the simulation of coupled heat, air, and moisture transfer in porous media

Authors :
Nathan Mendes
Laurent Gosse
Denys Dutykh
Julien Berger
Laboratoire Optimisation de la Conception et Ingénierie de l'Environnement (LOCIE)
Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)
Polytech Annecy-Chambéry (EPU [Ecole Polytechnique Universitaire de l'Université de Savoie])
Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])
Laboratoire de Mathématiques (LAMA)
Centre National de la Recherche Scientifique (CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])
Institut National des Sciences Mathématiques et de leurs Interactions (INSMI)
Pontifical Catholic University of Paraná (PUCPR)
Pontifical Catholic University of Paraná
Istituto per le Applicazioni del Calcolo 'Mauro Picone' (IAC)
Consiglio Nazionale delle Ricerche [Roma] (CNR)
Source :
Engineering Reports, Engineering Reports, John Wiley & Sons Ltd, 2020, 2 (2), pp.e12099. ⟨10.1002/eng2.12099⟩, Engineering Reports, Vol 2, Iss 2, Pp n/a-n/a (2020)
Publication Year :
2020
Publisher :
Wiley, 2020.

Abstract

41 pages, 13 figures, 2 tables, 32 references. Other author's papers can be downloaded at http://www.denys-dutykh.com/; International audience; This article proposes an efficient explicit numerical model with a relaxed stability condition for the simulation of heat, air and moisture transfer in porous material. Three innovative approaches are combined to solve the system of three partial differential equations. The Du Fort-Frankel scheme is used to solve the diffusion equation, providing an explicit scheme with an extended stability region. The two advection--diffusion equations are solved using both Scharfetter-Gummel numerical scheme for the space discretisation and the two-step Runge-Kutta method for the time variable. This combination enables to relax the stability condition by one order. The proposed numerical model is evaluated on three case studies. The first one considers quasi-linear coefficients to confirm the theoretical results by numerical computations. The stability condition is relaxed by a factor of 40 compared to the standard approach. The second case provides an analytical solution for weakly nonlinear problem. A very satisfactory accuracy is observed between the reference solution and the one provided by the numerical model. The last case study assumes more realistic application with nonlinear coefficients and Robin-type boundary conditions. The computational time is reduced 10 times by using the proposed model in comparison with the explicit Euler method.

Details

ISSN :
25778196
Volume :
2
Database :
OpenAIRE
Journal :
Engineering Reports
Accession number :
edsair.doi.dedup.....ae6008d221ac31e144d18641dd81b79a