Back to Search Start Over

Aluminum nitride thin films deposited by hydrogen plasma enhanced and thermal atomic layer deposition

Authors :
Carmen Jiménez
Liang Tian
Michel Pons
S. Ponton
Fabien Volpi
M. Benz
Roman Reboud
Elisabeth Blanquet
Christophe Vallée
Gael Giusti
Alexandre Crisci
Laetitia Rapenne
Arnaud Mantoux
Science et Ingénierie des Matériaux et Procédés (SIMaP )
Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])
SIL’TRONIX-ST, Archamps, France
Laboratoire des matériaux et du génie physique (LMGP )
Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National Polytechnique de Grenoble (INPG)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
Laboratoire des technologies de la microélectronique (LTM )
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])
Institut National Polytechnique de Grenoble (INPG)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
Science et Ingénierie des Matériaux et Procédés ( SIMaP )
Université Joseph Fourier - Grenoble 1 ( UJF ) -Institut polytechnique de Grenoble - Grenoble Institute of Technology ( Grenoble INP ) -Institut National Polytechnique de Grenoble ( INPG ) -Centre National de la Recherche Scientifique ( CNRS ) -Université Grenoble Alpes ( UGA )
Laboratoire des matériaux et du génie physique ( LMGP )
Institut National Polytechnique de Grenoble ( INPG ) -Centre National de la Recherche Scientifique ( CNRS ) -Institut polytechnique de Grenoble - Grenoble Institute of Technology ( Grenoble INP )
Laboratoire des Technologies de la Microélectronique ( LTM )
Commissariat à l'énergie atomique et aux énergies alternatives ( CEA )
Source :
Surface and Coatings Technology, Surface and Coatings Technology, 2018, 347, pp.181-190. ⟨10.1016/j.surfcoat.2018.04.031⟩, Surface and Coatings Technology, Elsevier, 2018, 347, pp.181-190. ⟨10.1016/j.surfcoat.2018.04.031⟩, Surface and Coatings Technology, Elsevier, 2018, 347, pp.181-190. 〈10.1016/j.surfcoat.2018.04.031〉
Publication Year :
2018
Publisher :
HAL CCSD, 2018.

Abstract

Plasma enhanced atomic layer deposition (PE-ALD) of aluminum nitride (AlN) thin films often utilizes NH3 or a mixture of N2 and H2 as a plasma source. However, the possibility of separating the activation step from the nitridation step by using H2 alone as the plasma source has never been explored. In this paper, we study the deposition of AlN by PE-ALD by using trimethylaluminum, H2 plasma and NH3 for deposition temperatures below 400 °C. The self-limiting ALD growth was achieved between 325 °C and 350 °C. As a comparison, AlN was also deposited by thermal ALD (T-ALD), where surface reactions between TMA and NH3 occurred with reasonable growth rates only at temperatures above 400 °C. The PE-ALD films showed low oxygen (1.5 at.%) and carbon contaminations (1 at.%). The T-ALD films contained carbon (5 at.%) mainly attributed to the presence of C Al bonds that was insignificant in PE-ALD films. The flow rate of H2 used in H2 plasma was found to have a significant impact on the preferred orientation of AlN films, where higher H2 flow rate promoted the (002) preferred orientation. Besides, the electrical resistivities were probed to be 108 Ω cm, as expected in an insulating material. As an example, AlN was used to infiltrate porous sintered silicon carbide (SiC). Both AlN deposited by PE-ALD and by T-ALD operating with exposure mode deposited at 400 °C were attempted. Even though, there is a greater risk for TMA precursor to decompose at 400 °C, infiltration of AlN was more successful by T-ALD operating with exposure mode.

Details

Language :
English
ISSN :
02578972 and 18793347
Database :
OpenAIRE
Journal :
Surface and Coatings Technology, Surface and Coatings Technology, 2018, 347, pp.181-190. ⟨10.1016/j.surfcoat.2018.04.031⟩, Surface and Coatings Technology, Elsevier, 2018, 347, pp.181-190. ⟨10.1016/j.surfcoat.2018.04.031⟩, Surface and Coatings Technology, Elsevier, 2018, 347, pp.181-190. 〈10.1016/j.surfcoat.2018.04.031〉
Accession number :
edsair.doi.dedup.....ae86905467a17a0863da50f775894cdc
Full Text :
https://doi.org/10.1016/j.surfcoat.2018.04.031⟩