Back to Search
Start Over
Root Hair Mutations Displace the Barley Rhizosphere Microbiota
- Source :
- Frontiers in Plant Science, Frontiers in Plant Science, Vol 8 (2017)
- Publication Year :
- 2017
- Publisher :
- Frontiers Media S.A., 2017.
-
Abstract
- This work was supported by a Royal Society of Edinburgh/Scottish Government Personal Research Fellowship co-funded by Marie Curie Actions awarded to DB. SR-A is supported by a BBSRC iCASE studentship awarded to DB (BB/M016811/1) and partnered by the James Hutton Limited (Invergowrie, United Kingdom). RAT is supported by a Scottish Food Security Alliance-Crops studentship, provided by the University of Dundee, the University of Aberdeen, and the James Hutton Institute. James Hutton researchers receive financial support from the Rural and Environment Science and Analytical Service Division of the Scottish Government.<br />The rhizosphere, the thin layer of soil surrounding and influenced by plant roots, defines a distinct and selective microbial habitat compared to unplanted soil. The microbial communities inhabiting the rhizosphere, the rhizosphere microbiota, engage in interactions with their host plants which span from parasitism to mutualism. Therefore, the rhizosphere microbiota emerges as one of the determinants of yield potential in crops. Studies conducted with different plant species have unequivocally pointed to the host plant as a driver of the microbiota thriving at the root–soil interface. Thus far, the host genetic traits shaping the rhizosphere microbiota are not completely understood. As root hairs play a critical role in resource exchanges between plants and the rhizosphere, we hypothesized that they can act as a determinant of the microbiota thriving at the root–soil interface. To test this hypothesis, we took advantage of barley (Hordeum vulgare) mutant lines contrasting for their root hair characteristics. Plants were grown in two agricultural soils, differentiating in their organic matter contents, under controlled environmental conditions. At early stem elongation rhizosphere specimens were collected and subjected to high-resolution 16S rRNA gene profiling. Our data revealed that the barley rhizosphere microbiota is largely dominated by members of the phyla Bacteroidetes and Proteobacteria, regardless of the soil type and the root hair characteristics of the host plant. Conversely, ecological indices calculated using operational taxonomic units (OTUs) presence, abundance, and phylogeny revealed a significant impact of root hair mutations on the composition of the rhizosphere microbiota. In particular, our data indicate that mutant plants host a reduced-complexity community compared to wild-type genotypes and unplanted soil controls. Congruently, the host genotype explained up to 18% of the variation in ecological distances computed for the rhizosphere samples. Importantly, this effect is manifested in a soil-dependent manner. A closer inspection of the sequencing profiles revealed that the root hair-dependent diversification of the microbiota is supported by a taxonomically narrow group of bacteria, with a bias for members of the orders Actinomycetales, Burkholderiales, Rhizobiales, Sphingomonadales, and Xanthomonadales. Taken together, our results indicate that the presence and function of root hairs are a determinant of the bacterial community thriving in the rhizosphere and their perturbations can markedly impact on the recruitment of individual members of the microbiota.<br />Royal Society of Edinburgh/Scottish Government Personal Research Fellowship
- Subjects :
- 0301 basic medicine
plant–microbe interactions
Microbe interactions
Plant Science
lcsh:Plant culture
Root hair
root hairs
03 medical and health sciences
Botany
microbiota
lcsh:SB1-1110
Original Research
2. Zero hunger
Rhizosphere
biology
Ecology
Host (biology)
Bacteroidetes
food and beverages
barley
Plant
15. Life on land
biology.organism_classification
Rhizobiales
Burkholderiales
030104 developmental biology
Hordeum vulgare
Proteobacteria
rhizosphere
Subjects
Details
- Language :
- English
- ISSN :
- 1664462X
- Volume :
- 8
- Database :
- OpenAIRE
- Journal :
- Frontiers in Plant Science
- Accession number :
- edsair.doi.dedup.....aedc18c9ad7e2cd74700ce40ba561b63