Back to Search Start Over

Fast computation of generic bivariate resultants

Authors :
Grégoire Lecerf
Joris van der Hoeven
Laboratoire d'informatique de l'École polytechnique [Palaiseau] (LIX)
Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X)
Centre National de la Recherche Scientifique (CNRS)
MAX
Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X)
Source :
Journal of Complexity, Journal of Complexity, Elsevier, 2021, ⟨10.1016/j.jco.2020.101499⟩
Publication Year :
2021
Publisher :
HAL CCSD, 2021.

Abstract

We prove that the resultant of two “sufficiently generic” bivariate polynomials over a finite field can be computed in quasi-linear expected time, using a randomized algorithm of Las Vegas type. A similar complexity bound is proved for the computation of the lexicographical Grobner basis for the ideal generated by the two polynomials.

Details

Language :
English
ISSN :
0885064X and 10902708
Database :
OpenAIRE
Journal :
Journal of Complexity, Journal of Complexity, Elsevier, 2021, ⟨10.1016/j.jco.2020.101499⟩
Accession number :
edsair.doi.dedup.....af16f477bc5f2b76c6ddcae556fde7c2
Full Text :
https://doi.org/10.1016/j.jco.2020.101499⟩