Back to Search Start Over

Chromatin topology and the timing of enhancer function at the HoxD locus

Authors :
Leonardo Beccari
Andréa Willemin
Denis Duboule
Edgardo Rodríguez-Carballo
Lucille Lopez-Delisle
Sandra Gitto
Bénédicte Mascrez
Source :
Proceedings of the National Academy of Sciences. 117:31231-31241
Publication Year :
2020
Publisher :
Proceedings of the National Academy of Sciences, 2020.

Abstract

The HoxD gene cluster is critical for proper limb formation in tetrapods. In the emerging limb buds, different sub-groups of Hoxd genes respond first to a proximal regulatory signal, then to a distal signal that organizes digits. These two regulations are exclusive from one another and emanate from two distinct TADs flanking HoxD, both containing a range of appropriate enhancer sequences. The telomeric TAD (T-DOM) contains several enhancers active in presumptive forearm cells and is divided into two sub-TADs separated by a CTCF-rich boundary, which defines two regulatory sub-modules. To understand the importance of this particular regulatory topology to control Hoxd gene transcription in time and space, we either deleted or inverted this sub-TAD boundary, eliminated the CTCF binding sites or inverted the entire T-DOM to exchange the respective positions of the two sub-TADs. The effects of such perturbations on the transcriptional regulation of Hoxd genes illustrate the requirement of this regulatory topology for the precise timing of gene activation. However, the spatial distribution of transcripts was eventually resumed, showing that the presence of enhancers sequences, rather than either their exact topology or a particular chromatin architecture, is the key factor. We also show that the affinity of enhancers to find their natural target genes can overcome the presence of both a strong TAD border and an unfavourable orientation of CTCF sites.SIGNIFICANCE STATEMENTMany genes important for vertebrate development are surrounded by series of remote enhancer sequences. Such regulatory landscapes and their target genes are usually located within the same chromatin domains, which appears to constrain the action of these regulatory sequences and hence to facilitate enhancer-promoter recognition and gene expression. We used the HoxD locus to assess the impact of modifying the regulatory topology upon gene activation in space and time. A series of chromosomal re-arrangements involving deletions and inversions reveals that the enhancer topology plays a role in the timing of gene activation. However, gene expression was often recovered, subsequently, illustrating the intrinsic capacity of some enhancers to find their target promoters despite an apparently adverse chromatin topology.

Details

ISSN :
10916490 and 00278424
Volume :
117
Database :
OpenAIRE
Journal :
Proceedings of the National Academy of Sciences
Accession number :
edsair.doi.dedup.....af97975ed14e45f18b8423c110a917a9
Full Text :
https://doi.org/10.1073/pnas.2015083117