Back to Search Start Over

A Cryogenic 1 GSa/s, Soft-Core FPGA ADC for Quantum Computing Applications

Authors :
Stefan Visser
Edoardo Charbon
Harald Homulle
Source :
IEEE Transactions on Circuits and Systems Part 1: Regular Papers, 63(11)

Abstract

We propose an analog-to-digital converter (ADC) architecture, implemented in an FPGA, that is fully reconfigurable and easy to calibrate. This approach allows to alter the design, according to the system requirements, with simple modifications in the firmware. Therefore it can be used in a wide range of operating conditions, including a harsh cryogenic environment. The proposed architecture employs time-to-digital converters (TDCs) and phase interpolation techniques to reach a sampling rate, higher than the clock frequency (maximum 400 MHz), up to 1.2 GSa/s. The resulting FPGA ADC can achieve a 6 bit resolution (ENOB) over a 0.9 to 1.6 V input range and an effective resolution bandwidth (ERBW) of 15 MHz. This implies that the ADC has an effective Nyquist rate of 30 MHz, with an oversampling ratio of $40\times $. The system non-linearities are less than 1 LSB. The main advantages of this architecture are its scalability and reconfigurability, enabling applications with changing demands on one single platform.

Details

ISSN :
15498328
Database :
OpenAIRE
Journal :
IEEE Transactions on Circuits and Systems Part 1: Regular Papers, 63(11)
Accession number :
edsair.doi.dedup.....afa631ef47431bb6ad9e0693cde83fd5