Back to Search Start Over

Mixed-integer formulations for the Capacitated Rank Pricing Problem with envy

Authors :
Concepción Domínguez
Martine Labbé
Alfredo Marín
Integrated Optimization with Complex Structure (INOCS)
Inria Lille - Nord Europe
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université libre de Bruxelles (ULB)-Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 (CRIStAL)
Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)
Universidad de Murcia
Source :
Computers & Operations Research. 140:105664
Publication Year :
2022
Publisher :
Elsevier BV, 2022.

Abstract

Pricing under a consumer choice model has been extensively studied in economics and revenue management. In this paper, we tackle a generalization of the Rank Pricing Problem (RPP), a multi-product pricing problem with unit-demand customers and a ranking-based consumer choice model. We generalize the RPP assuming that each product has a limited amount of copies for sale, and we call this extension the Capacitated Rank Pricing Problem (CRPP). We compare the envy-free allocation of the products (a fairness criterion requiring that customers receive their highest-ranked product given the pricing) with the envy version of the problem. Next, we focus on the CRPP with envy. We introduce two integer linear formulations for the CRPP and derive valid inequalities leveraging the structure of the problem. Afterwards, we develop separation procedures for the families of valid inequalities of greater size. The performance of the formulations and the resolution algorithms developed is tested by means of extensive computational experiments.

Details

ISSN :
03050548
Volume :
140
Database :
OpenAIRE
Journal :
Computers & Operations Research
Accession number :
edsair.doi.dedup.....b011d50c1797fa0e1cf2e0ba021b691a
Full Text :
https://doi.org/10.1016/j.cor.2021.105664