Back to Search Start Over

Chemistry-climate model simulations of spring Antarctic ozone

Authors :
Steven C. Hardiman
Slimane Bekki
Theodore G. Shepherd
John Scinocca
Hamish Struthers
Greg Bodeker
N. Butchart
Ulrike Langematz
Patrick Jöckel
Eugene Rozanov
Martin Dameris
Olaf Morgenstern
E. Mancini
Sandip Dhomse
John Austin
Marion Marchand
Dan Smale
Jean-Francois Lamarque
Douglas E. Kinnison
Andrew Gettelman
Martyn P. Chipperfield
P. Braesicke
Ch. Brühl
Hideharu Akiyoshi
Tetsu Nakamura
David Cugnet
D. A. Plummer
J. E. Nielsen
Yousuke Yamashita
Giovanni Pitari
H. Teyssèdre
A. J. G. Baumgaertner
Kiyotaka Shibata
John A. Pyle
Martine Michou
Hella Garny
Anne Kubin
S. M. Frith
NOAA Geophysical Fluid Dynamics Laboratory (GFDL)
National Oceanic and Atmospheric Administration (NOAA)
University Corporation for Atmospheric Research (UCAR)
Stockholm University
Canadian Centre for Climate Modelling and Analysis (CCCma)
Environment and Climate Change Canada
National Institute for Environmental Studies (NIES)
Max Planck Institute for Chemistry (MPIC)
Max-Planck-Gesellschaft
STRATO - LATMOS
Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS)
Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)
Bodeker Scientific
NCAS-Climate [Cambridge]
Department of Chemistry [Cambridge, UK]
University of Cambridge [UK] (CAM)-University of Cambridge [UK] (CAM)
United Kingdom Met Office [Exeter]
School of Earth and Environment [Leeds] (SEE)
University of Leeds
DLR Institut für Physik der Atmosphäre (IPA)
Deutsches Zentrum für Luft- und Raumfahrt [Oberpfaffenhofen-Wessling] (DLR)
NASA Goddard Space Flight Center (GSFC)
Science Systems and Applications, Inc. [Lanham] (SSAI)
National Center for Atmospheric Research [Boulder] (NCAR)
Institut für Meteorologie [Berlin]
Freie Universität Berlin
University of L'Aquila [Italy] (UNIVAQ)
Groupe d'étude de l'atmosphère météorologique (CNRM-GAME)
Institut national des sciences de l'Univers (INSU - CNRS)-Météo France-Centre National de la Recherche Scientifique (CNRS)
National Institute of Water and Atmospheric Research [Lauder] (NIWA)
Physikalisch-Meteorologisches Observatorium Davos/World Radiation Center (PMOD/WRC)
Institute for Atmospheric and Climate Science [Zürich] (IAC)
Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology [Zürich] (ETH Zürich)
Department of Physics [Toronto]
University of Toronto
Meteorological Research Institute [Tsukuba] (MRI)
Japan Meteorological Agency (JMA)
Centre national de recherches météorologiques (CNRM)
Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP)
Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3)
Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3)
Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS)
Source :
Journal of Geophysical Research: Atmospheres, Journal of Geophysical Research: Atmospheres, American Geophysical Union, 2010, 115, pp.D00M11. ⟨10.1029/2009JD013577⟩, Journal of Geophysical Research: Atmospheres, 2010, 115, pp.D00M11. ⟨10.1029/2009JD013577⟩
Publication Year :
2010

Abstract

International audience; Coupled chemistry-climate model simulations covering the recent past and continuing throughout the 21st century have been completed with a range of different models. Common forcings are used for the halogen amounts and greenhouse gas concentrations, as expected under the Montreal Protocol (with amendments) and Intergovernmental Panel on Climate Change A1b Scenario. The simulations of the Antarctic ozone hole are compared using commonly used diagnostics: the minimum ozone, the maximum area of ozone below 220 DU, and the ozone mass deficit below 220 DU. Despite the fact that the processes responsible for ozone depletion are reasonably well understood, a wide range of results is obtained. Comparisons with observations indicate that one of the reasons for the model underprediction in ozone hole area is the tendency for models to underpredict, by up to 35%, the area of low temperatures responsible for polar stratospheric cloud formation. Models also typically have species gradients that are too weak at the edge of the polar vortex, suggesting that there is too much mixing of air across the vortex edge. Other models show a high bias in total column ozone which restricts the size of the ozone hole (defined by a 220 DU threshold). The results of those models which agree best with observations are examined in more detail. For several models the ozone hole does not disappear this century but a small ozone hole of up to three million square kilometers continues to occur in most springs even after 2070.

Details

Language :
English
ISSN :
2169897X and 21698996
Database :
OpenAIRE
Journal :
Journal of Geophysical Research: Atmospheres, Journal of Geophysical Research: Atmospheres, American Geophysical Union, 2010, 115, pp.D00M11. ⟨10.1029/2009JD013577⟩, Journal of Geophysical Research: Atmospheres, 2010, 115, pp.D00M11. ⟨10.1029/2009JD013577⟩
Accession number :
edsair.doi.dedup.....b04a61716d25a6aa9cf7699f4835d516